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Purpose.

Describe random paths which are not only weighted according to their lengths, but

also according to random impurities which are met on the way

* Motivations:

, Model for polymers: (i) irregular chains (ii) without
self-intersections (iii) interacting with the environment

, interface in random medium (d = 1),

, random growth (KPZ class), . . .

, non-zero temperature version of oriented percolation (last
passage)

* Directed: our polymer leaves in dimension d+ 1, and stretches in
the first direction
−→ environment regenerates at each step, allows for martingales

* Discrete or continuous models
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The model.

Medium: independent i.d. real r.v. η(t, x), t ∈ {1, 2, . . .}, x ∈ Zd
“impurities” η ∼ Q ; d ≥ 1: transverse dim. Assume ∀β

expλ(β) := Q[expβη(t, x)] <∞

Path ω, P : simple random walk on Zd (nearest neighbours)

Energy of path ω in time n: Hn(ω) =
∑n
t=1 η(t, ωt)

Polymer measure = probability measure µn on path space

dµn(ω) =
exp (βHn(ω))

Zn
dP (ω)

with β ∈ R+, and Zn = P [exp (βHn(ω))] .
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The Model.

The polymer ω is:

• attracted to locations (t, x) with η(t, x) > 0 (rewards)

• repelled by those with η(t, x) < 0 (penalties, obstacles)

more and more as β ↗ (β ≥ 0).

+ β = 0 : Simple Random Walk Some Guidelines:
β = +∞: last passage, oriented percolation

+ Z+ × Zd replaced by the tree: branching process

+ related, but more distant models:

• RW in soft obstacles: Sznitman; Antal’95, Wüthrich’98
• heteropolymers near interface Hn =

∑
t≤n(η(t) + h)sign(ωt)

d = 1 Bolthausen, den Hollander, Biskup, Bodineau, Giacomin. . .
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Outline.

Questions: for typical medium η, what is the polymer behavior under µn ? (n large)

1. Expand lnZn ∼ np ; Var lnZn � nχ ; p, χ(d, β,Q) =?

2. Order of displacement: µn(|ωn|) � nξ
Diffusivity or super-diffusivity (ξ = or > 1/2)?

3. scaling identity between exponents (conjecture) χ = 2ξ − 1

Intuitive picture:

If the polymer does not feel too much the medium, it should behave like SRW

But if the disorder is strong enough, typical paths should be pinned
down to favourable clouds (localization), which are at a distance
(superdiffusivity); these clouds being small, thermodynamic quantities
mostly depend on a few r.v. (large fluctuations)

What does “strong disorder” mean ?
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Outline.

Plan:

1. Thermodynamics of disordered systems

2. Zn as a martingale

3. lnZn as a super-martingale

4. Strong disorder and localization

5. Continuous model
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1-Thermodynamics of Disordered Systems.

lim
n→∞

1

n
Q[lnZn]

sub−addit.
=: p(β) “quenched pressure ′′

concent.
= lim

n→∞
1

n
lnZn Q− a.s

Standard concentration inequality (if Q[eδη(t,x)2

] <∞):

Q
[ 1

n
| lnZn −Q[lnZn]| ≥ ε

]
≤ e−Cnε2 hence χ ≤ 1/2

Jensen’s inequality Q[lnZn] ≤ lnQ[Zn] = nλ, hence p ≤ λ.

Proposition 1: function β 7→ λ(β)− p(β) is non-decreasing on R+

Corollary: ∃βpc ∈ [0,∞] such that: p(β) < λ(β) ⇐⇒ β > βpc
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1-Thermodynamics of Disordered Systems.

� of Proposition 1. For each ω define dQ̃ = dQ̃ω(η) = eβHn−nλdQ ,
and compute

d

dβ
Q[lnZn]− nλ = Q

[
P

{
eβHn

Zn
(Hn − nλ′)

}]

= P

[
Q̃

{
1

Zn
(Hn − nλ′)

}]

≤ P

[
Q̃

{
1

Zn

}
× Q̃ {(Hn − nλ′)}

]

= 0

since the (product) measure Q̃ is FKG �
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1-Thermodynamics of Disordered Systems.

Is βpc := inf{β ≥ 0; p(β) < λ(β)} finite?

Adapting an argument for the tree case (eg, Kahane-Peyrière ’76):

(KP ) βλ′(β)− λ(β) > ln 2d =⇒ p(β) < λ(β)

Note: If the law of η(t, x) has no mass at its maximum, condition (KP)
holds for β large enough

β 0 βpc ∞ |
| −−−−−−−−− | −−−−−−−−−−−− |
| p = λ | p < λ |
| −−−−−−−−− | −−−−−−−−−−−− |
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2- Wn as a Martingale.

Wn := Zne
−nλ

positive martingale w.r.t. Gn = σ{η(t, x); 1 ≤ t ≤ n, x ∈ Zd}
[Bolthausen’89].

Wn
a.s.−→W∞ , as n→∞

with {W∞ = 0} tail event: By Kolmogorov’s 0-1 law,




either W∞ > 0 a.s.

or W∞ = 0 a.s.
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2- Wn as a Martingale.

Wn
a.s.−→W∞ ,





either W∞ > 0 a.s. Weak Disorder

or W∞ = 0 a.s. Strong Disorder

As in Prop. 1, monotonicity: for β ≤ β′,
(SD) at β ⇒ (SD) at β′

−→ Another phase diagram, with critical point

βc = inf{β ≥ 0; (SD) at β} . . .

... still of interest:

(WD) ⇐⇒ Q lnZn ∼ nλ, χ = 0 =⇒ p = λ, χ = 0 in Question1−

Clearly βc ≤ βpc . Is it = ?
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2- Wn as a Martingale.

Condition (L2): with Escape = {ωn 6= 0 ∀n ≥ 1}

λ(2β)− 2λ(β) < − lnP (Escape)

• (L2) holds when d ≥ 3 provided β is small (for arbitrary Q). . .

• . . . but not necessarily:
In dimension d ≥ 3, if η ∼ Bernoulli(p) with p > P (Escape),

then (L2) holds for all β ≥ 0.

−→ Reminiscent of percolating regime.

Directed Polymers – p.12/26



2- Wn as a Martingale.

Condition (L2): with Escape = {ωn 6= 0 ∀n ≥ 1}

λ(2β)− 2λ(β) < − lnP (Escape)

• (L2) holds when d ≥ 3 provided β is small (for arbitrary Q). . .

• . . . but not necessarily:
In dimension d ≥ 3, if η ∼ Bernoulli(p) with p > P (Escape),

then (L2) holds for all β ≥ 0.

−→ Reminiscent of percolating regime.

Directed Polymers – p.12/26



2- Wn as a Martingale.

Condition (L2): with Escape = {ωn 6= 0 ∀n ≥ 1}

λ(2β)− 2λ(β) < − lnP (Escape)

• (L2) holds when d ≥ 3 provided β is small (for arbitrary Q). . .

• . . . but not necessarily:
In dimension d ≥ 3, if η ∼ Bernoulli(p) with p > P (Escape),

then (L2) holds for all β ≥ 0.

−→ Reminiscent of percolating regime.

Directed Polymers – p.12/26



Wn as a martingale.

Theorem 2 Assume condition (L2): Then,

1. (WD) holds

2. Diffusivity holds: central limit theorem for Q-a.e. η, invariance
principle, local limit theorem

3. µn(Hn)− nλ′(β)
a.s.−→ d

dβW∞/W∞ �

Bolthausen′89(1,2), Imbrie-Spencer′88(2), Albeverio-Zhou′96(2),
Sinaï′95(2), C-Yoshida′04(3), Birkner′04(1),. . .
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Wn as a martingale.
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1. (WD) holds

2. Diffusivity holds: central limit theorem for Q-a.e. η, invariance
principle, local limit theorem

3. µn(Hn)− nλ′(β)
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dβW∞/W∞ �

Bolthausen′89(1,2), Imbrie-Spencer′88(2), Albeverio-Zhou′96(2), Sinaï′95(2),

C-Yoshida′04(3),. . .

� (1) L2-boundedness: suptQ[W 2
t ] <∞.

(2) and (3): using L2-computations
(3) d

dβ lnWn = µn(Hn)− nλ′, and Wn →W∞ is a.-s. convergence of
analytic functions of β.
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Wn as a martingale: summary.

* (KP)⇒Wn = O(e−nδ) a.s.

* Small dimension, ∀β 6= 0 : Wn





= 0(e−δn
1/3

) , d = 1

→ 0 , d = 2

Estimate fractional moments Q[W θ
t ], θ ∈ (0, 1) with a “differential” inequality

Phase diagram, when η has no mass at the top of his support

β 0 βc ∞ |
| −−−−−−− | −−−−−−−−− |

d ≥ 3 | (WD) | (SD) |
| −−−−−−− −− −−−−−−−−− |

d = 1, 2 | (SD) |
| −−−−−−− −− −−−−−−−−− |
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3- lnWn as a super-martingale.

Take two replicas ω, ω̃ (=independent polymers in the same environment
η), and define

In = µ⊗2
n−1[ωn = ω̃n],

similar to the replica overlap in Derrida-Spohn’88

Theorem 3 For all β 6= 0

• criterium (WD) versus (SD) : W∞ = 0
a.s.⇐⇒ ∑

n≥1 In =∞
• Then, − lnWn �

∑
t≤n It �

Notation: f � g iff
(

lim inft→∞
f(t)
g(t) > 0, lim sup f(t)

g(t) <∞
)

Carmona-Hu’02, C-Shiga-Yoshida’03 Quantitative statement !
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3- lnWn as a super-martingale.

Doob’s decomposition of supermartingale lnWn = −An +Mn

Write Wn

Wn−1
= 1 + Un with Un = µn−1[eβη(n,ωn)−λ − 1] conditionnally

centered

An −An−1 = −Q[lnWn − lnWn−1|Fn−1] = −Q[ln(1 + Un)|Fn−1]

� −Q[U2
n|Fn−1]

= −µ⊗2
n−1Q

[
(eβη(n,ωn)−λ − 1)(eβη(n,ω̃n)−λ − 1)|Fn−1

]

� −µ⊗2
n−1[ωn = ω̃n] = −In

Finally,
An �

∑

t≤n
It , 〈M〉n = O(

∑

t≤n
It)

Theorem 3 follows from martingale Convergence Th. and L.L.N. �
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3- lnWn as a super-martingale.

In the region (WD), we have χ = 0 by definition

Question: is ξ = 1/2 everywhere there ?

Theorem 4 (weak invariance principle) Assume (WD). ∀F bounded
continuous on the path space,

lim
n
µn

[
F

(
ωnt√
n

)]
= EF (B)

in Q-probability. B.M. with diffusion matrix 1
dId. �

Important step: the measure µn converges weakly to a Markov chain
(time-inhomogeneous, depending on η)
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4- (SD) and Localization.

In =
∑
x µ
⊗2
n−1(ωn = x)2 ∈ (0, 1] is all the closer to 1 as µn−1 is localized:

max
x∈Zd

µn−1[ωn = x]2 ≤ In ≤ max
x∈Zd

µn−1[ωn = x]

The maximizing x is the favourite “location" for ωn of the polymer at time n (under µn−1);

large maximum value means strong localization

Theorem 5 (c, C > 0 constant).

* (KP) =⇒ p < λ =⇒ Cesaro− limn→∞ In ≥ C Q− a.s.

* d = 1 or 2 =⇒ lim supn In ≥ C a.s.

* (L2) =⇒ In = OQ(n−c) �

• Non-trivial dependence in the dimension.
• Is c = d/2 ? (yes in continuous case, open here)
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5- A continuous model.

η: Poisson field in R+ × Rd, with intensity dtdx
P : Wiener measure on Rd

Vt : “tube”around the graph of the Brownian path ω,

Vt = Vt(ω) = {(s, x) ; s ∈ (0, t], x ∈ U(ωs)},

with U(x) ⊂ Rd the closed ball with volume 1 and center x.

Polymer measure

µt(dω) =
exp (βη(Vt))

Zt
P (dω),

C-Yoshida’03
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5- Kardar-Parisi-Zhang equation.

point-to-point partition function

Zn(x) = P [eβHn : ωn = x] , ht(x) = lnZt(x)

satisfies “formally” to a KPZ equation

dht(y) =
1

2

(
∆ht(y) + |∇ht(y)|2

)
dt+ β η(dt×U(y))

Phenomenological equation for growth models
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5- Exponents and Deviations.

Exponents (rough definitions) Under µt with t large,

|ωt| ∼ tξ(d) , lnZt −Q[lnZt] ∼ tχ(d)

Conjectures: universal exponents (for low temperature),

χ(1) = 1/3, ξ(1) = 2/3, χ(d) = 2ξ(d)− 1 .

Theorem 4 Fix ξ0 >
1+χ(d)

2 . Then, the law of t−ξ0ωt under µt satisfies
an almost-sure large deviation principle with rate I(x) = |x|2/2 and
speed t2ξ0−1. In particular, for a.e. environment,

µt(|ωt| ≥ atξ0) = exp{−t2ξ0−1(a2/2 + o(1))}

as t→∞ for all a ≥ 0. �
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5- Exponents and deviations.

Corollary:

ξ(d) ≤ 1 + χ(d)

2
,

and since χ(d) ≤ 1/2, this implies

ξ(d) ≤ 3/4

�
Piza’97, Newman-Piza’97, Wuthrich’98, Petermann’00, Mejane’04,
Carmona-Hu’04

Proposition: χ(1) ≥ 1/8 (in favor of superdiffusivity)
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5- Exponents and Deviations.

� of Theorem 4: Fix t ≥ 0, define Θt : s 7→ (s ∧ t)θ.
By Girsanov’s formula, ω = ω −Θt is a Brownian motion under
P (dω) = exp(θ · ωt − t|θ|2/2)P (dω). So,

P [eβη(Vt(ω))eθ·ωt−t|θ|
2/2] =def. P [eβη(Vt(ω+Θt))]

=Girs. P [eβη(Vt(ω+Θt))]

= P [eβη(TθVt(ω))]

= Zt ◦ T−θ(η)

=law Zt(η) .

Here, Tθ : (s, x) 7→ (s, x+ sθ).
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5- Exponents and Deviations.

Now,

lnµt[e
tξ0−1θ·ωt ] = t2ξ0−1|θ|2/2 + lnZt ◦ T 1

−θtξ0−1 − lnZt

= t2ξ0−1|θ|2/2 +O(tχ(d))

(same expectation + def. of fluctuation exponent).
Now conclude by Gartner-Ellis. �
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so much is left!.

• Phase diagram: βc = βpc or not?

• d = 1: is p < λ for β 6= 0 ?

• relations between exponents

• closer relation to percolation, “random geodesics” of Newman et
al.

• d = 1 exact exponents and limit laws
Baik-Deift-Johansson’99, Johansson’00, Prahofer-Spohn’01
β = +∞, d = 1, η ∼ exponential or geometric

• Universality
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