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Abstract.

The study of statistical mechanical systems at critical points in two di-
mensions leads to the consideration of conformally-invariant (CI) scaling
curves, for example the boundaries of clusters. This set of lectures gives a
comprehensive description of the fractal geometry of such CI scaling curves,
in the plane or half-plane.

It focuses on deriving critical exponents associated with interacting ran-
dom paths, by exploiting an underlying quantum gravity (QG) structure. It
makes use of Knizhnik, Polyakov and Zamolodchikov (KPZ) maps relating
exponents in the plane to those on a random lattice, i.e., in a fluctuating
metric. This is done within the framework of conformal field theory (CFT),
with applications to well-recognized critical models, like Brownian paths,
O(N) and Potts models, and to the Stochastic Löwner Evolution (SLE).

Two fundamental ingredients of the QG construction are the relation
between bulk and Dirichlet boundary exponents, and establishing additiv-
ity rules for QG boundary conformal dimensions associated with mutually-
avoiding random sets.

A general reference for the content of these lectures is [1].

The first lecture will be devoted to the non-intersection exponents for
random walks (RW’s) or Brownian paths, self-avoiding walks (SAW’s), or
arbitrary mixtures thereof in the plane. I shall give a description of the
partition functions of collections of such walks on a random lattice, and
calculate those partition functions by elementary applications of random
matrix theory. From those and the KPZ relation I shall derive in particular
the non-intersection exponents of Brownian paths in the plane [1, 2]. ¿ The
general structure of the scaling behavior of the partition functions so derived
will also be used to established general quantum gravity additivity rules for
scaling exponents, to be used in the following lectures.

The second lecture will focus on the multifractal properties of the
harmonic measure (i.e., electrostatic potential, or diffusion field) near any
conformally invariant fractal boundary in the plane. The multifractal func-
tion f(α, c) gives the Hausdorff dimension of the set of points where the
potential varies with distance r to the fractal frontier as rα, and is given as
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a function of the central charge c of the associated CFT. It is obtained from
the general QG approach described above.

Brownian paths, SAW’s in the scaling limit, and critical percolation clus-
ters all have identical spectra corresponding to the same central charge c = 0.
The common Hausdorff dimension of their frontiers is D = supαf(α; c =
0) = 4/3, which confirms Mandelbrot’s conjecture for the Brownian frontier
dimension. It has been proven rigorously by Lawler, Schramm, and Werner
[3].

Higher multifractal functions, like the double spectrum f2(α, α′; c) of the
double-sided harmonic measure, will also be considered.

The third lecture will deal with the universal mixed multifractal spec-
trum f(α, λ; c) describing the local winding rate λ and singularity exponent
α of the harmonic measure near any CI scaling curve [4]. It gives a prob-
abilistic description of the geometry of equipotentials near the CI curve,
which appear as a collection of logarithmic spirals of varying rates λ.

The Hausdorff dimensions DH of a non-simple scaling curve or cluster
hull, and DEP of its external perimeter or frontier, obey the duality equation
(DH − 1)(DEP − 1) = 1

4 , valid for any value of the central charge c.
The duality which exists between simple and non-simple random paths is

established via an extended KPZ relation for the SLE. It reflects a duality
property κ → κ′ = 16/κ for the SLEκ, where the SLEκ′<4 is the frontier of
the non-simple SLEκ>4 path. This allows one to calculate the SLE multi-
fractal exponents from simple QG rules.

Finally, I address the question of the mathematically rigorous derivation
of the multifractal spectra for the SLE.
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