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Mark Kacon Probability and Physicsin:

Marian Smoluchowski and the Evolution
of Statistical Thought in Physics:

““...In 1906 when Smoluchowski (influenced by the
appearance of Einstein’s two papers [on Brownian motion])
finally published his results, random phenomena would not
come readily to mind. It required therefore, | think, an
Intellectual tour de force, to bring games of chance to bear
upon understanding of physical phenomena.”
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Random Walks



Brownian Path

Paul Léevy: Conformal Invariance



Brownian Frontier

Mandelbrot conjecture (1982): Hausdorff dimension D = g‘,
as a SAW.



Self-Avoiding Walk

SAW in plane - 1,000,000 steps

(courtesy of T. Kennedy)
B. Nienhuis (1982): D = 3



| ntersections of Random Walks

L = 3 non-intersecting random walks crossing an annulus from r to R

Probability
PL) =P{ b (B0, nBM[0,1]) =0},

that the intersection of L paths B{) is empty up to time t.



Scaling Exponents

At large times, the non-intersection probability decays as
PL(t) &t 0,

where (| Is a universal exponent depending only on L.
Similarly, the probability that the Brownian paths altogether
traverse the annulus D (r,R) in C from the inner boundary
circle of radius r to the outer one at distance R scales as

PL(R) ~ (r/R)%.



Half-Plane Case

L = 2 mutually-avoiding random walks crossing a half-annulus from r to
R in the half-plane H

L walks constrained to stay in the half-plane H with Dirichlet
boundary conditions on dH , and started at neighboring
points near the boundary: non-intersection probability P (t).



Boundary Exponents

Boundary critical exponent ZL

~

P (t) ~1

NI

3

Probability that the Brownian paths altogether traverse the
half-annulus D (r,R) in H, centered on the boundary line oH,
from the inner boundary circle of radius r to the outer one at
distance R: )

PL(R) ~ (r/R)‘ .



Conformal Invariance and Weights
It was conjectured from conformal invariance arguments and
numerical simulations that (B. D.- Kwon (1988))

_ p(c=0) _ 1 | 2
ZL_hO,L —2—(4 —1),
and for the half-plane

~ _ 1
(L= h(l(,:2L04)—2 =zL{d+2L),

where h|(oc,2;, denotes the Kac conformal weight
[(m+1)p —mq]* 1
Am(m+41)

of a minimal conformal field theory of central charge
c=1-6/[m(m+1)], me N*. Brownian paths: c=0,m = 2.

-

)



Non-Intersections of Packets of Walks

L = 3 packets of ny = 3,n, = 3, and n3 = 2 independent planar random
walks, in a mutually-avoiding star configuration, and crossing the
annulus fromr to R



Bulk Case

L mutually-avoiding packets | = 1,---,L, made of n,
Independent RW’s, started at neighboring points.
Non-intersection probability of the L packets up to time t:

Pnla"‘,nL (t) ~ t_z(nl,“-,nL)
Original case of L mutually-avoiding simple RW’s:

np=..=n_=1.
In the annulus D (r,R) in C:

Py (1) & (r/R)Z6 (MM



Boundary Case

Two mutually-avoiding packets of n; = 3, and np = 2

random walks, in the half-plane H.

Probability near a Dirichlet boundary
By (1) st 260
and for crossing the half-annulus D (r,R) in H
(

Py on, (1) & (/R M)

Independent



Cascade Relations

U—t(n)=z(v24n+1-1)

\

e Lawler & Werner (98): Conformal invariance of Brownian
motions

e B.D. (98): Interpretation and calculation in terms of
“Quantum Gravity”



2D Quantum Gravity



Randomly Triangulated L attice

A random planar triangular lattice.



Statistical Mechanics on a Regular
L attice
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Random lines on the (dual of) a regular triangular lattice



Statistical M echanics on a Random

Random lines on a random planar triangular lattice



Dual Lattice

YR

Random loops on the dual random lattice



Boundary Effects

Dirichlet boundary conditions on a random disk



Partition Function

Random planar triangular lattice G with fixed spherical topology.

1
ZP)= 5 e el
PR
(3: “‘chemical potential® for the area, I.e., number of vertices
|G| of G; S(G) its symmetry factor. Any fixed Euler
characteristic X possible; here x = 2.



Critical Behavior

The partition sum converges for [3 larger than some critical
Bc. For 3 — . asingularity appears due to infinite graphs

Z(B,X) ~ (B—Be)?YerX)

where ygr(X) Is the string susceptibility exponent, depending
on the genus of G through its Euler characteristic . For pure
gravity and for the spherical topology

1
Yar (X = 2) = 5



Doubly Punctured Sphere

A particular partition function plays an important role, that of
the doubly punctured sphere:

0° 1
ALY 3=a—Bgz(BaX=2)= > @|G|ZE_B|G|,

G(x=2)

scaling as

Z[c o] ~ (B—Po) =2



KPZ Knizhnik, Polyakov, Zamolodchikov, 88

A “conformal operator” O (e.g. creating the line extremity)
has conformal weight A (or A) in (boundary) quantum gravity.

&Y W@%é%
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The same operator has conformal weight { =U(A) in C
(C=U(A)inH)



KPZ
A fundamental quadratic relation exists between conformal

weights A on a random planar surface (resp. A on a random
disk ) and those  in C (resp. ¢ in H)
A—y
—UA)=A—"
with y the string susceptibility exponent. For Brownian paths,
self-avoiding walks, and percolation, y= —1/2, and the KPZ

relation becomes

ZzU(A)z%A(lJrZA).



Random Walks on a Random L attice

oot

Set of L = 3 mutually-avoiding random walks

Walk set ‘B = {Bi(}),l =1,...,L} on the random planar graph
G, started at vertex 1 € G, ended at vertex j € G.



Random Walk Partition Function

1
ZL(B,Z): E —e_B|G| E E Z|$|7
pIanarGS(G) ,1eG g
i

1=1,...,L
where a fugacity” 7 1S associated with the total number
|B| = ‘U| 1 ‘ of vertices visited by the walks.



Boundary Partition Function
oG

L = 3 mutually-avoiding RW’s traversing a random disk.

Boundary case: G has the disk topology and the random
walks connect sites 1 and ] on the boundary dG, with fugacity

e~P for the boundary’s length |0G|

5 5 _B|G| .—P|0G B
2Py =y e PGt 5 5,
dik G i,j€0G Bﬂ)

|I=1..L



Punctured Disk Partition Function

Partition function of the disk with two boundary punctures: it
corresponds to the L = O case of the VARS

Z(< ) =71o(B,p) = ) e~PICle=FICl |G 2.
disk G



Equivalent Random Trees (Aldous-Broder)

L—tree partition function on the random lattice:
1

20(3,7) = e—BIC AT
pIa%r GS(G) i,j%G 'I%)
I=1...L

{Ti(}),l =1,.--, L} are L mutually-avoiding trees, joining
sites 1 and J; a fugacity z governs the total number of tree

vertices |T| = |U|L:1T(')‘ .



Boundary Trees
0G

L = 3 mutually-avoiding random trees traversing a random disk

Boundary case where G is a disk and the trees connect sites i
and j on the boundary dG, with a fugacity 7 = exp(—3)
associated with the boundary’s length

AR R D
disk G ,j€de 1
1=1,...L



Quantum Surgery

The shaded areas are portions of random lattice G with a disk
topology; L = 2 trees connect the end-points. Each
corresponds to a generating function, as follows. (For a global
disk topology, the dashed lines represent the boundary, whereas for the
sphere the top and bottom dashed lines are identified)



Tree Generating Function

Each random tree has a generating function

TX)=$ X'"Ty,
ngl

where T1 = 1and T, is the number of rooted planar trees
with n external vertices (excluding the root):

T (x)= %(1— v1—4x).

The patches of random lattice are representated as follows.



Disk Generating Function

A planar random disk with n external legs

Partition function of a random disk with n external vertices:

Gn(B) = —BIG|
(B) n—Ieg%anar Ge

Large—N limit of a random N x N matrix integral:

=/bdAp(B,A>A”,

0 ([3,A): spectral eigenvalue density, with compact support

):
a(B),b(R)];



b L L
Z1(B,2) :/a I|1d?\| p(B,)\l)HT(ZN,Z?\Hl),

with a cyclic structure A .1 = A1. The disk G; of random
surface between trees T~ T() contributes a spectral
density p(A;) . The backbone of tree T() between disks G,
and G, 1 yields a “propagator” 7 (zA,zA|11)

T(x,y) = [1=T(x) =T ()]



Boundary Integral Representation
Boundary partition function:

N oL+1

7.(B,2,7) :/ dA (B ) [T (2,21

L(B aﬂ 1 P(B, A r! 1,ZN141)
XL(Z)\;L) (Z)\L+1)

with two extra propagators £ describing the two boundary
lines:

L(7N) == (1—7\)1

This gives for the two-puncture disk partition function

2 ) =2o(B7) = [ Dp(EN) L)



Critical Behavior

Critical behavior of Z ([3,7) or Z, ([3 z,7 = exp (—E)):
Trlple scaling limit: B — B/ (infinite random lattice),

B — BC (infinite boundary length), and z — z_ (infinite

RW?’s); the average lattice area, boundary length, and RW’s
sizes respectively scale as

(IG]) ~ (B—Be) ™, (10G]) ~ (B—Be) ™4, (|B) ~ (e —2) 7.

The later analysis of the singular behavior in terms of
“conformal weights” requires a natural finite-size scaling
(hereafter dropping (- --))

0G| ~ |G[YZ ~ | B].



Power Counting

Each component of the integrals scales with a power law of the mean area

(GJ):
L
7L~ (/pd)\*‘f)
. L
5~ (/pd)\*T) */pd)\*Lz

Z(< ) = ZON/pd)\*LZ

where the x symbolic notation represents the factorisation of scaling
behaviors. Thisimplies the fundamental scaling relations:

ZL ~ (Z)"




Conformal Weights

The partition function Z; represents a doubly punctured
sphere with two conformal operators, of conformal weights
A (here two vertices sources of L mutually-avoiding RW’s):

Z ~2Z[@ o] x|6] 2

The boundary partition function Z, corresponds to a doubly
punctured disk with two boundary operators of conformal

weights A, :
7L ~Z(< 3 )x|0G|



Structural Relations
e Doubly punctured sphere partition function [y := ygr (X = 2)]:

Z[G o] ~(B—=Bo)"~IG].

e Scaling equivalences for bulk and boundary partition functions:

2L~ (Z0)" ~ZL)Z(6 s )~ [20)2(6 0 )]

e Defi nitions of conformal weights

2 ~Z[G o] |G, ZjZ(¢ w )~ 0G|

~ 7 ~ |G oG (7))t
e Perimeter-area scaling |0G| ~ |G|Y/2
= 20\ —Y= AL — LAl.

e BULK <— BOUNDARY e LINEARITY OF BOUNDARY WEIGHTS



Brownian Exponentsin Q G
The analysis of the singularities of the integrals
gives
20 —y = A =L
A = 1.
Fromy = —% of pure gravity, one fi nally gets

1 1
A = Z(L=2
= o(3)

~

AL = L.



Exponentsin C or H & KPZ

U(A) :%A(lJrZA)

A=E(-D), L =U) = & (@2 -1)

~

AL =L, (L=UA)=2L(1+2L) QED



Lifein QG Is easy



Bulk-Boundary Relation




Quantum Boundary Additivity & Mutual
Avoidance

20\ g — Y= Dang = Da+ Ag



Quantum Gravity & Packets of Walks




Brownian Packet In Q G

Boundary conformal weight in H of a packet of n
Independent Brownian paths.

~S

(=n
Inverting KPZ:

~

A(n) =U"(n) = %1(\/24n+ 1-1).

The Brownian paths, independent in a fixed metric, are
strongly coupled by the metric fluctuations in quantum
gravity.



Back to the (Half-) Plane with KPZ

[ Z(nla"'anL) =U (A{nlf”anL})

3 2ng,- o) =V (A{ng, - ,nc})

A{nlv T nL} — 2|L:1U _1(n|) — 2|L=1 éll(\/24n| +1-— 1)

U(A) = 3A(1+24)

V(2)=U[3(8-3)] = 5(44°-1),

Quantum gravity & cascade relations, QED.



Mandelbrot Conjecture

|
N
g
I
Nl
|

whence

(LSW, 2000)

w|



