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The setup

Goal: To study systems of objects constrained only by a
“non-overlapping” condition
Countable family P of objects: polymers, animals, . . . ,
characterized by

I An incompatibility constraint:

γ � γ′

γ ∼ γ′
if γ, γ′ ∈ P incompatible

compatible

For simplicity: each polymer incompatible with itself
(γ � γ, ∀γ ∈ P)

I A family of activities z = {zγ}γ∈P ∈ CP .
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The basic (“finite-volume”) measures

Defined, for each finite family PΛ ⊂ P, by weights

WΛ

(
{γ1, γ2, . . . , γn}

)
=

1
ΞΛ(z)

zγ1zγ2 · · · zγn

∏
j<k

11{γj∼γk}

for n ≥ 1 γ1, γ2, . . . , γn ∈ PΛ, and WΛ(∅) = 1/ΞΛ, where

ΞΛ(z) = 1 +
∑
n≥1

1
n!

∑
(γ1,...,γn)∈Pn

Λ

zγ1zγ2 . . . zγn

∏
j<k

11{γj∼γk}

I Λ = some label, often finite subset of a countable set
I As compatible polymers are necessarily different,

1
n!

∑
(γ1,...,γn)∈Pn

Λ

[ • ]
∏
j<k

11{γj∼γk} =
∑

{γ1,...,γn}⊂PΛ

[ • ]
∏
j<k

11{γj∼γk}

(different situation below for cluster expansion)
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The questions:

I Existence of the limit PΛ → P (“thermodynamic limit”)
I Properties of the resulting measure (mixing properties,

dependency on parameters,. . . )
I Asymptotic behavior of ΞΛ
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Motivation

Immediate:

I Physics: Grand-canonical ensemble of polymer gas with
activities zγ and hard-core interaction

I Statistics: Invariant measure of point processes with
not-overlapping grains and birth rates zγ

Less immediate:

I Statistical mechanical models at high and low temperatures
are mapped into such systems

I More generally: most perturbative arguments in physics
involve maps of this type (choice of the “right” variables)

I Zeros of the partition functions ΞΛ relate to phase
transitions (sphere packing, chromatic polynomials,. . . )
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Graph-theoretical framework

Equivalently, consider the incompatibility graph G = (P, E)
Unoriented graph with:

I Vertices = polymers
I Edges = incompatible pairs

γ � γ′ iff {γ, γ′} ∈ E or γ ↔ γ′ (1)

(contrast!)
I E is arbitrary; vertices can be of infinite degree (polymers

incompatible with infinitely many other polymers)

WARNING! There will be other graphs (up to three levels)
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Polymers as lattice gases

In this graph-theoretical framework:
I Incompatible polymers = neighboring vertices
I Polymer system = hard-core gas in a complicated lattice
I Neighborhood of γ0:

N ∗
γ0

= {γ ∈ P : γ � γ0}
Nγ0 = N ∗

γ0
\ {γ0}

I Independent vertices = non-neighboring vertices
I Independent sets = sets formed by independent vertices

Thus,
ΞΛ(z) =

∑
Γ⊂PΛ

independent

zΓ with zΓ =
∏
γ∈Γ

zγ
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Example: Single-call loss networks

Definition

I P = finite subsets of Zd —the calls
I A call γ is attempted with Poissonian rates zγ
I Call succeeds if it does not intercept existing calls
I Once established, calls have an exp(1) life span

Remarks

I Basic measures are invariant for the finite-region process
(γ � γ′ ⇐⇒ γ ∩ γ′ 6= ∅)

I Thermodynamic limit: infinite-volume process
I Discrete point process with hard-core conditions
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Statistical mechanical lattice models

Their ingredients are:

I Lattice L countable set of sites (e.g. Zd)
I Single-site space (E,F , µE) with natural measure structure

(e.g. counting measure if E countable, Borel if E ⊂ Rd)
I Configuration space Ω = EL, with product measure
I Interaction Φ = {φB : B ⊂⊂ L} where φB = φB(ωB)

I Bonds are sets B such that φB 6= 0
I Exclusions:

I ΦB(ωB) =∞ (physicist)
I Ωall ⊂ Ω (math-phys)
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Statistical mechanical measures
Their finite-volume versions are defined by

I Hamiltonians: For Λ ⊂⊂ L, and boundary condition σ

HΛ(ω | σ) =
∑
B⊂Λ

φB(ωΛσ)

I Boltzmann Probability densities (weights)

WΛ(ω | σ) =
exp{−βHΛ(ω | σ)}

Zσ
Λ

(ω, σ ∈ Ωall) with

Zσ
Λ =

∫
Ωall

exp{−βHΛ(ω | σ)}
⊗
x∈Λ

µE(dωx)

(β = inverse temperature)
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Example zero: Hard-core lattice gases

L =vertices of a graph (eg. Zd), E = {0, 1}
(F =discrete, µE =counting)

φB(ω) =


−uωx if B = {x}
∞ if B = {x, y} n.n.
0 otherwise

Let
Γ(ω) = {x : ωx = 1}

Then, for Λ ⊂⊂ L,

WΛ(ω | 0) =
1
Z0

Λ

∏
x∈Γ(ωΛ)

eβu
∏

x,y∈Γ(ωΛ)

11{x 6↔y}
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Lattice gas = polymer model

This is a polymer model with
I P = {vertices of L}
I x 6∼ y iff x and y are graph neighbors
I zx = eβu

(For Sokal-like people all polymer models are of this type)
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Ising model at low temperatures

L = Zd, E = {−1, 1}, (F =discrete, µE =counting)

φB(ω) =
{
−J ωxωy if B = {x, y} n.n.

0 otherwise

Call a bond B = {x, y} excited or frustrated if ωxωy = −1

HΛ(ω | +) = 2J FΛ(ω)− JNΛ ;

FΛ(ω) = #{B frustrated : B ∩ Λ 6= ∅}
NΛ = #{B : B ∩ Λ 6= ∅}

As NΛ is independent of ω

WΛ(ω | +) =
exp{−2βJ FΛ(ω)}∑
σΛ

exp{−2βJ FΛ(σ)}



Genesis Loss LT Geom Partitions CE Ind

Ising model at low temperatures

L = Zd, E = {−1, 1}, (F =discrete, µE =counting)

φB(ω) =
{
−J ωxωy if B = {x, y} n.n.

0 otherwise

Call a bond B = {x, y} excited or frustrated if ωxωy = −1

HΛ(ω | +) = 2J FΛ(ω)− JNΛ ;

FΛ(ω) = #{B frustrated : B ∩ Λ 6= ∅}
NΛ = #{B : B ∩ Λ 6= ∅}

As NΛ is independent of ω

WΛ(ω | +) =
exp{−2βJ FΛ(ω)}∑
σΛ

exp{−2βJ FΛ(σ)}



Genesis Loss LT Geom Partitions CE Ind

Ising model at low temperatures

L = Zd, E = {−1, 1}, (F =discrete, µE =counting)

φB(ω) =
{
−J ωxωy if B = {x, y} n.n.

0 otherwise

Call a bond B = {x, y} excited or frustrated if ωxωy = −1

HΛ(ω | +) = 2J FΛ(ω)− JNΛ ;

FΛ(ω) = #{B frustrated : B ∩ Λ 6= ∅}
NΛ = #{B : B ∩ Λ 6= ∅}

As NΛ is independent of ω

WΛ(ω | +) =
exp{−2βJ FΛ(ω)}∑
σΛ

exp{−2βJ FΛ(σ)}



Genesis Loss LT Geom Partitions CE Ind

Contour representation

I Place a plaquette (segment) orthogonally at the midpoint
of each frustrated bond

I These plaquettes form a family of disjoint closed connected
surfaces (curves)

I Each such closed surface is a contour. Denote

CΛ =
{
contours γ : γ ⊂ Λ}

I Contours are disjoint: γ ∼ γ′ ⇐⇒ γ ∩ γ′ = ∅
I Each ω is in one-to-one correspondence with a compatible

family of contours Γ(ω)
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Contour polymer model

exp
{
−2βJ FΛ(ω)

}
= exp

{
−

∑
γ∈Γ(ω)

2βJ |γ|
}

=
∏

γ∈Γ(ω)

zγ

with zγ = exp{−2βJ |γ|}. Hence

WΛ(ω | +) =
1

ΞΛ

∏
γ∈Γ(ω)

zγ

with

ΞΛ(z) = 1 +
∑
n≥1

1
n!

∑
(γ1,...,γn)∈Cn

Λ

zγ1zγ2 . . . zγn

∏
j<k

11{γj∼γk}
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Generalization: LTE for Ising ferromagnets

L =any, E = {−1, 1}, interactions

φB(ω) = −JB ω
B ,with JB ≥ 0

Without loss, free boundary conditions:

HΛ(ω) = −
∑

B∈BΛ

JB ω
B

with
BΛ =

{
B : JB > 0 and B ⊂ Λ

}
[for HΛ(· | +) use B+

Λ , etc]
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Generalized contours

Write

HΛ(ω) = −
∑

B∈BΛ

JB

(
ωB − 1 + 1

)
= −

∑
B∈BΛ

JB

(
ωB − 1

)
−

∑
B∈BΛ

JB

I A bond B is excited or frustrated if ωB = −1
I Γ(ωΛ) = set of frustrated bonds in Λ
I A contour is a maximal connected component of Γ

(connexion = intersection)
I CΛ = set of possible contours in Λ
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Contours and probability weights

WΛ(ω) =

∏
γ∈Γ(ωΛ) e−βE(γ)

Z̃Λ

where E(γ) =
∑

B∈γ 2JB and

Z̃Λ =
∑
σΛ

∏
γ∈Γ(σΛ)

e−βE(γ) =
∑
Γ∈CΛ

NΓ

∏
γ∈Γ

e−βE(γ)

with NΓ = {ωΛ : Γ(ωΛ) = Γ}

We compute NΓ with a little help from group theory



Genesis Loss LT Geom Partitions CE Ind

Contours and probability weights

WΛ(ω) =

∏
γ∈Γ(ωΛ) e−βE(γ)

Z̃Λ

where E(γ) =
∑

B∈γ 2JB and

Z̃Λ =
∑
σΛ

∏
γ∈Γ(σΛ)

e−βE(γ) =
∑
Γ∈CΛ

NΓ

∏
γ∈Γ

e−βE(γ)

with NΓ = {ωΛ : Γ(ωΛ) = Γ}

We compute NΓ with a little help from group theory



Genesis Loss LT Geom Partitions CE Ind

Contours and probability weights

WΛ(ω) =

∏
γ∈Γ(ωΛ) e−βE(γ)

Z̃Λ

where E(γ) =
∑

B∈γ 2JB and

Z̃Λ =
∑
σΛ

∏
γ∈Γ(σΛ)

e−βE(γ) =
∑
Γ∈CΛ

NΓ

∏
γ∈Γ

e−βE(γ)

with NΓ = {ωΛ : Γ(ωΛ) = Γ}

We compute NΓ with a little help from group theory



Genesis Loss LT Geom Partitions CE Ind

Contours and probability weights

WΛ(ω) =

∏
γ∈Γ(ωΛ) e−βE(γ)

Z̃Λ

where E(γ) =
∑

B∈γ 2JB and

Z̃Λ =
∑
σΛ

∏
γ∈Γ(σΛ)

e−βE(γ) =
∑
Γ∈CΛ

NΓ

∏
γ∈Γ

e−βE(γ)

with NΓ = {ωΛ : Γ(ωΛ) = Γ}

We compute NΓ with a little help from group theory



Genesis Loss LT Geom Partitions CE Ind

Contours and group theory

I Γ(ωΛ) = Γ(σΛ) iff ωB = σB for all B ∈ BΛ

I Γ(ωΛ) = Γ(σΛ) iff (ω · σ)B = 1 for all B ∈ BΛ, where

(ω · σ)x = ωxσx

Site-wise product
I Γ(ωΛ) = Γ(σΛ) iff ω = χ · σ for some χ ∈ SΛ with

SΛ =
{
χ : χB = 1 for all B ∈ BΛ

}
Symmetry group

I NΛ = |SΛ|
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Ferromagnetic LT polymer model

Finally,
ZΛ = |SΛ| ΞLT

Λ

with

ΞLT
Λ (z) = 1 +

∑
n≥1

1
n!

∑
(γ1,...,γn)∈Cn

Λ

zγ1zγ2 . . . zγn

∏
j<k

11{γj∼γk}

for
zγ = exp

{
−2β

∑
B∈γ

JB

}
(|zγ | small for β large) and

γ ∼ γ′ ⇐⇒ γ ∩ γ′ = ∅
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Geometrical polymer models

Polymers of previous examples (loss networks, Peierls contours)
are points of a set
These are the original polymer models of Gruber and Kunz
Formally, geometrical polymer models are defined by:

I A set V (eg. possible calls, surfaces)
I A family P of finite subsets of V (eg. connected)
I Activity values (zγ)γ∈P
I The relation γ ∼ γ′ ⇐⇒ γ ∩ γ′ = ∅

In this case PΛ = {γ ∈ P : γ ⊂ Λ}, Λ ⊂⊂ V
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General geometrical polymers

Vertex-set polymers
V = vertex set of a graph (lattice, dual lattice)

I Polymers are defined through connectivity properties
(graph-connected)

I Compatibility determined by graph distances (overlapping,
being neighbors or sufficiently close)

WARNING! Second-level graph. On top: incompatibility graph

Decorated geometrical polymers
γ = (γ,Dγ) where

I γ = finite subset of V (“base”)
I Dγ some additional attribute (color, “decoration”)
I In this case: x ∈ γ means x ∈ γ, etc
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Ratios of partition functions

Partition functions play a central role. Three reasons:

I Correlations are ratios of partition functions
I So are characteristic and moment-generating functions
I (Complex) zeros of partition functions related to phase

transitions, coloring problems, etc
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Polymer correlation functions

Let
I ProbΛ the basic measure in PΛ

I γ1, . . . , γk mutually compatible polymers in PΛ

Then

ProbΛ

(
{γ1, . . . , γk are present}

)
= zγ1 · · · zγk

ΞΛ\{γ1,...,γk}∗

ΞΛ

where

ΞΛ\{γ1,...,γk}∗ = partition function of polymers in PΛ

compatible with γ1, . . . , γk
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Statistical mechanical correlations

Likewise, for the stat-mech models, let
I ProbΛ( · | σ) be the measure in Λ with b.c. σ
I A∆ be an event depending only on spins in ∆ ⊂ Λ

Then

ProbΛ(A∆) =
∫

11{A∆}(ω∆)
Z

ω∆ σL\Λ
Λ\∆

Zσ
Λ

⊗
x∈∆

µE(dωx)

where

Z
ω∆ σL\Λ
Λ\∆ = partition function in Λ \∆ with condition

ω in ∆ and σ outside Λ
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Characteristic/moment-generating functions

Let α : P → R and

SΛ(γ1, . . . , γn) =
n∑

i=1

α(γi)

for {γ1, . . . , γn} ⊂ PΛ. Hence EΛ

(
eξ SΛ

)
equals

1
ΞΛ(z)

∑
{γ1,...,γn}⊂PΛ

zγ1 · · · zγn eξ [α(γ1)+···+α(γn)]
∏
j<k

11{γj∼γk}

That is,

EΛ

(
eξ SΛ

)
=

ΞΛ(zξ)
ΞΛ(z)

with zξ
γ = zγ eξα(γ)

Complex ξ are of interest!
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Zeros and phase transitions

For (translation-invariant) stat-mech models

f(β,h) = lim
Λ→L

1
|Λ|

logZσ
Λ

exists and is independent of the boundary condition σ
I Spin systems: −f/β =free-energy density
I Gas models: f/β = pressure

Key information: smoothness as function of β and h

Loss of analyticity = phase transition (of some sort)

Sufficient conditions for analyticity of f :
I Zeros of ZΛ Λ-uniformly away from (β,h)
I Λ-independent radius of analyticity of 1

|Λ| logZΛ
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Alternative lines of attack

Physicist:
Control Ξ through expansion techniques −→ cluster expansions

I Genesis/reincarnations: Mayer, virial, high-temperature,
low-density, . . . expansions

I Not everybody’s cup of tea
I Involves algebraic and graph theoretical considerations
I Less natural for purely probabilistic studies (analyticity?)

Probabilists:
Models with exclusions = invariant measures of point processes

I Weaker results (no analyticity!) but wider applicability
I Can use probabilistic techniques (coupling!)
I Leads to (perfect) simulation algorithms
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Cluster expansions

The idea is to write the polynomials in (zγ)γ∈P

ΞΛ(z) = 1 +
∑
n≥1

1
n!

∑
(γ1,...,γn)∈Pn

Λ

zγ1zγ2 . . . zγn

∏
j<k

11{γj∼γk}

as formal exponentials of another formal series

ΞΛ(z) F= exp
{ ∞∑

n=1

1
n!

∑
(γ1,...,γn)∈Pn

Λ

φT (γ1, . . . , γn) zγ1 . . . zγn

}
The series between curly brackets is the cluster expansion

WATCH OUT!: No consistency requirement, thus

1
n!

∑
(γ1,...,γn)∈Pn

Λ

6=
∑

{γ1,...,γn}⊂PΛ
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Clusters and truncated functions

I φT (γ1, . . . , γn): Ursell or truncated functions (symmetric)
I Clusters: Families {γ1, . . . , γn} s.t. φT (γ1, . . . , γn) 6= 0
I The formula of φT will be given later. Highlights:

I Clusters are connected w.r.t. “�”
I

φT (γ) = 1 , φT (γ, γ′) =
{
−1 if γ � γ′

0 otherwise
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Ratios and derivatives

Telescoping, ratios of partitions = product of one-contour ratios

Substracting cluster expansions:

ΞΛ

ΞΛ\{γ0}

F= exp
{ ∞∑

n=1

1
n!

∑
(γ1,...,γn)∈Pn

Λ
∃i: γi=γ0

φT (γ1, . . . , γn) zγ1 . . . zγn

}

Slightly more convenient series:

∂

∂zγ0

log ΞΛ
F= 1+

∞∑
n=1

1
n!

∑
(γ1,...,γn)∈Pn

Λ

φT (γ0, γ1, . . . , γn) zγ1 . . . zγn

Two strategies to deal with this series: classical and inductive
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Classical cluster-expansion strategy

Find convergence conditions for the series

Πγ0(ρ) := 1 +
∞∑

n=1

1
n!

∑
(γ1,...,γn)∈Pn

∣∣φT (γ0, γ1, . . . , γn)
∣∣ ργ1 . . . ργn

for ργ > 0. Then,

Cluster expansions converge absolutely for |zγ | ≤ ργ uniformly
in Λ (complex valued allowed!)

This determines a region of analyticity R common for all Λ

Within this region

ΞΛ

ΞΛ\{γ0}
≤ |zγ0 | Πγ0(|z|)
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Consequences

I Zeros of all ΞΛ outside R (no phase transitions!)
I Within R

I Explicit series expressions for free energy and correlations
I Explicit δ-mixing:∣∣∣∣ Prob({γ0 , γx})

Prob({γ0}) Prob({γx})
− 1

∣∣∣∣ =
∣∣∣eF [d(γ0,γx)] − 1

∣∣∣
with F (d) → 0 as d→∞

I Central limit theorem
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Free-energy expansion

Within R

log ΞΛ =
∞∑

n=1

1
n!

∑
(γ1,...,γn)∈Pn

Λ

φT
n (γ1, . . . , γn) zγ1 . . . zγn

=
∑

γ∈PΛ

zγ −
1
2

∑
(γ,γ′)∈P2

Λ
γ�γ′

zγ zγ′ +O(|z|3)

Each term is O(|Λ|)
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Free-energy-density (pressure) expansion

Within R: For the translation-invariant geometrical model

f = lim
Λ

1
|Λ|

log ΞΛ

exists and is analytic on parameters (no phase transitions!)

f =
∞∑

n=1

1
n!

∑
(γ1,...,γn) : 0∈∪γi

φT
n (γ1, . . . , γn) zγ1 . . . zγn

=
∑
γ30

zγ −
1
2

∑
γ�γ′

0∈γ∪γ′

zγ zγ′ +O(|z|3)



Genesis Loss LT Geom Partitions CE Ind

Correlations

ProbΛ

(
{γ0}

)
= zγ0

ΞΛ\{γ0}∗

ΞΛ
= zγ0

exp
{∑

C⊂PΛ
C∼γ0

W T (C)
}

exp
{∑

C⊂PΛ
W T (C)

}
Hence

Prob
(
{γ0}

)
= zγ0 exp

{
−

∞∑
n=1

1
n!

∑
(γ1,...,γn)
∃i:γi�γ0

φT (γ1, . . . , γn) zγ1 . . . zγn

}

= zγ0 exp
{ ∑

γ�γ0

zγ +O(|z|2)
}

= zγ0

[
1 +

∑
γ�γ0

zγ

]
+O(|z|3)
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Mixing properties

ProbΛ({γ0} | {γx}) =
ProbΛ({γ0 , γx})

ProbΛ({γx})

= zγ0

ΞΛ\{γ0,γx}∗

ΞΛ\{γx}∗

= zγ0

exp
{∑

C⊂PΛ
C∼γ0,γx

W T (C)
}

exp
{∑

C⊂PΛ
C∼γx

W T (C)
}

= zγ0 exp
{
−

∑
C⊂PΛ

C�γ0 , C∼γx

W T (C)
}
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δ-mixing

Hence

ProbΛ({γ0} | {γx})
ProbΛ({γ0})

=

exp
{
−

∑
C⊂PΛ
C�γ0
C∼γx

W T (C)
}

exp
{
−

∑
C⊂PΛ
C�γ0

W T (C)
}

and

Prob({γ0} | {γx})
Prob({γ0})

= e
P

C�γ0 , C�γx
W T (C)

= eF [d(γ0,γx)]

with F (d) → 0 as d→∞. Thus∣∣∣∣ Prob({γ0 , γx})
Prob({γ0}) Prob({γx})

− 1
∣∣∣∣ =

∣∣∣eF [d(γ0,γx)] − 1
∣∣∣
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Central Limit Theorem

Lemma (Dobrushin)
Let (Sn) be a sequence of random variables such that
(i) E(S2

n) <∞
(ii) Var(Sn) ≥ c n

(iii) ∃R > 0 such that∣∣∣log
∣∣E(eξSn)

∣∣∣∣∣ ≤ c̃ n if |ξ| < R

Then
Sn − E(Sn)√

Var(Sn)
Law−→ N (0, 1)
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Inductive strategy (Kotecký-Preiss, Dobrushin)

Find conditions on z defining a region R such that

ΞΛ\{γ0}∗ 6= 0 in R =⇒ ΞΛ 6= 0 in R

for all Λ, γ0 6∈ Λ
I Expansion neither needed nor obtained

(no-cluster-expansion method)
I A posteriori: expansion converges in R −→ above concl.

Questions raised

I Why the alternative approach lead to better results?
I Can it be interpreted in terms of the classical approach?

Answer: Classical theory revisited
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Associated polymer models

A model has an associated polymer model if partition ratios are
the same

Equivalently,

Zmodel
Λ (param.) = constΛ Ξpolymer

Λ (z)

(constΛ ∼ a|Λ|).

Useful observation
If S finite set and (ϕa)a∈S , (ψa)a∈S complex-valued:∏

a∈S

[
ψa + ϕa] =

∑
A⊂S

∏
a∈A

ϕa

∏
a∈S\A

ψa

[
∏
∅ ≡ 1]
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