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The setup

Ingredients
» Countable family P of objects: polymers, animals, ...
» Incompatibility constraint: y ~ ' (with v ~ )
> Activities z = {zy},ep € CP.
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The setup

Ingredients

» Countable family P of objects: polymers, animals, ...
» Incompatibility constraint: y ~ ' (with v ~ )
> Activities z = {zy},ep € CP.

The basic (“finite-volume”) measures
For each finite family Py C P

1
WA({fylufYQ) v 7’771}) = m By Bryg * Ry, H ﬂ{ﬁj'\”}’k}

j<k

1
Ea(z) =1+ Z ol Z Zy1 Rz v By H Ly mm}

n>1 """ (Y1,..7m)EPR i<k
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Graph-theoretical framework

Incompatibility graph G = (P,€)
» Incompatible = neighboring (y = v = v < «/)

» Polymer system = hard-core gas in a complicated lattice

> N ={v € Py >0} Ny =N\ {70}

Penr
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Graph-theoretical framework

Incompatibility graph G = (P,€)

Incompatible = neighboring (v = v = v < /)
Polymer system = hard-core gas in a complicated lattice
Ny ={v€P vy >y} Ny =N\ {10}

Independent vertices = non-neighboring vertices

vV vV.v.v Yy

Independent sets = sets formed by independent vertices
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Graph-theoretical framework

Incompatibility graph G = (P, &)
» Incompatible = neighboring (y = v = v < «/)
» Polymer system = hard-core gas in a complicated lattice
> NI ={veP v} Ny =N\ {0}
» Independent vertices = non-neighboring vertices

» Independent sets = sets formed by independent vertices

Thus,
Ea(z) = Z 2' with 2! = sz

ICPp vel
independent

Penr
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Ratios of partition functions

» Correlations:

SAN{YL- vk

Proby ({71, ..., 7k are present}) = z,, -- 2y, =
ZEA
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Ratios of partition functions

» Correlations:
SAN Y1, Yk}

, Yk are present}) = zy, - 2y, =,

ProbA({'yl, e
S Yn) = Dy (i)

» Characteristic functions: If Sp (71, .

with z§ =2y efa)

B(e5%) = Ea(2)
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Ratios of partition functions

» Correlations:
SAN YL,

.Yk are present}) = zy, -2y, =,

ProbA({'yl, e
S Yn) = Dy (i)

» Characteristic functions: If Sp (71, .

GINEA .
Ea(e891) = _A with 2§ = 2, et
@) = 280 w5,
» Zeros of partition functions related to smoothness of
1
— log Z§
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Previous example: Single-call loss networks

» P = finite connected families of links of Z% —the calls
» 2, = Poissonian rate for the call v

» Compatibility = use of disjoint links (no intersection)
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Previous example: Single-call loss networks

» P = finite connected families of links of Z¢ —the calls

» 2, = Poissonian rate for the call v

» Compatibility = use of disjoint links (no intersection)

» Basic measures are invariant for the finite-region process

» Thermodynamic limit: infinite-volume process
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Previous example: Ising model at low T'

Using the contour representation:
» Polymers = contours (connected closed surfaces)
» Compatibility = no intersection
> 2y = exp{—=203J [7[}
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Previous example: Ising model at low T'

Using the contour representation:
» Polymers = contours (connected closed surfaces)
» Compatibility = no intersection
> 2, = exp{26J ||}

Then

Walw | +) =

[I]‘ —

e

with

1
z) = 1—|—Za Z 271272...27TLH11{7].N%}

n>1 " (y1,..7n)ECR i<k
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Previous example: LTE for Ising ferromagnets
Write

Hy(w) = — Z Jp(WwP —1) - Z JB

BeBj BeB
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Previous example: LTE for Ising ferromagnets
Write

Hy(w) = = > JpwP-1)= > Js

BeBa BeBy

» Contour = connected component of (excited) bonds

>z, = exp{—2ﬂZB€7J3}
> v~ iff yNy' =0 (disjoint bases); y = U{B: B € v}
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Previous example: LTE for Ising ferromagnets
Write

Hy(w) = = > JpwP-1)= > Js

BeBa BeBy

» Contour = connected component of (excited) bonds

>z, = exp{—2ﬂZB€7J3}
> v~ iff yNy' =0 (disjoint bases); y = U{B: B € v}

Then Z) = |SA| EIAT with
Sy = {X:XleforallBeBA}

(symmetry group)
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Previous example: LTE for Ising ferromagnets
Write

Hy(w) = = > JpwP-1)= > Js

BeBa BeBy

» Contour = connected component of (excited) bonds

>z, = eXP{—zﬁZB@JB}
> v~ iff yNy' =0 (disjoint bases); y = U{B: B € v}

Then Z) = |SA| EIAT with
Sy = {X:XleforallBEBA}

(symmetry group) and

E?\T(z) =1+ Z % Z By Ryg -+ Ry H ]1{’Yj~7k}

n>1 " (1,00 ) ECE i<k
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Geometrical polymer models

Original polymer models of Gruber and Kunz:

» P = family of finite subsets of some set V

>y~ =Ny =10

Penr
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Geometrical polymer models

Original polymer models of Gruber and Kunz:

» P = family of finite subsets of some set V
>y~ =Ny =10
Usually
» V = vertex set of a graph (lattice, dual lattice)
» Polymers defined by connectivity properties

» Compatibility determined by graph distances
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Geometrical polymer models

Original polymer models of Gruber and Kunz:

» P = family of finite subsets of some set V

>y~ =Ny =10
Usually

» V = vertex set of a graph (lattice, dual lattice)

» Polymers defined by connectivity properties

» Compatibility determined by graph distances
Warning: Do not confuse with the incompatibility graph
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Geometrical polymer models

Original polymer models of Gruber and Kunz:

» P = family of finite subsets of some set V

>y~ =Ny =10
Usually

» V = vertex set of a graph (lattice, dual lattice)

» Polymers defined by connectivity properties

» Compatibility determined by graph distances
Warning: Do not confuse with the incompatibility graph

A little more general: decorated geometrical polymers

vy=(0,D,) , 7="“base” CCV, D, = “decoration”

Penr
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Cluster expansions

Write the polynomials (in (zy)~ep)

1
Er(z) = 1+Zﬁ Z By1Ryg v By HH{VjN’Yk}

n>1 (V15 7) EPY Jj<k

Penr
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Cluster expansions

Write the polynomials (in (zy)~ep)

=1+ Z Z Zoj Zryg v+ By H Lo mn}

”>1 " (Y15 EPY Jj<k

as formal exponentials of a formal series

) L eafSh T o)

:A
n=1" (y1,...7)EP}

» The series between curly brackets is the cluster expansion
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Cluster expansions

Write the polynomials (in (zy)~ep)

=1+ Z Z RBy1Ryg « v By H ]I{WjN’Yk}

n>1 " (V1 1n)EPR Jj<k

as formal exponentials of a formal series

SINE: g {Z ol Z ¢T('Ylw~7’7n)z’yl”'2%}

n=1" (y1,...7)EP}

» The series between curly brackets is the cluster expansion
> ¢ (v1,...,7n): Ursell or truncated functions (symmetric)
» Clusters: Families {71,..., 7} s.t. 7 (y1,...,7m) #0

» Clusters are connected w.r.t. “~

Penr
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Classical cluster-expansion strategy

Find a A-independent polydisc where cluster expansions
converge absolutely

That is, find py > 0 independent of A such that cluster
expansions converge absolutely in the region

R = {z:\zv\gpv,fyep}
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Classical cluster-expansion strategy

Find a A-independent polydisc where cluster expansions
converge absolutely

That is, find p, > 0 independent of A such that cluster
expansions converge absolutely in the region

R = {z:\zﬂﬁpv,’yep}
To this, find p > 0 such that

H’Yo p = 1+Z Z }ng(VOyfyla"’v’yn)‘ p’Yl"'p’Yn
(’717 ) EP™

converges.
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Classical cluster-expansion strategy

Find a A-independent polydisc where cluster expansions
converge absolutely

That is, find p, > 0 independent of A such that cluster
expansions converge absolutely in the region

R = {z:\zﬂﬁpv,’yep}
To this, find p > 0 such that

00
1
H’Yo(p) = 1+ E E E }ng(VOyfyla"’?’yn)‘ p’Yl"'p’Yn
n=1"" (y1,0..;yn)EP™

converges. Within this region

» No =4 has a zero
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Classical cluster-expansion strategy

Find a A-independent polydisc where cluster expansions
converge absolutely

That is, find p, > 0 independent of A such that cluster
expansions converge absolutely in the region

R = {z:\zﬂﬁpv,’yep}
To this, find p > 0 such that

00
1
H’Yo(p) = 1+ E E E }ng(VOyfyla"’?’yn)‘ p’Yl"'p’Yn
n=1"" (y1,0..;yn)EP™

converges. Within this region

» No =4 has a zero
» Explicit series expressions for free energy and correlations

Penr
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Classical cluster-expansion strategy
Find a A-independent polydisc where cluster expansions

converge absolutely

That is, find p, > 0 independent of A such that cluster
expansions converge absolutely in the region

R = {z:\zﬂﬁpv,’yep}
To this, find p > 0 such that

00
1
H’Yo(p) = 1+ E E E }ng(VOyfyla"’?’yn)‘ p’Yl"'p’Yn
n=1"" (y1,0..;yn)EP™

converges. Within this region

» No =4 has a zero
» Explicit series expressions for free energy and correlations
» Explicit J-mixing

Penr



Recap Geom CE HT Dual Potts Chrom Markov Cont Trunc

Classical cluster-expansion strategy
Find a A-independent polydisc where cluster expansions

converge absolutely

That is, find p, > 0 independent of A such that cluster
expansions converge absolutely in the region

R = {z:\zﬂﬁpv,’yep}
To this, find p > 0 such that

oo
H’Yo(p) = 1+Z% Z }QbT(’YO:'Yla-‘-v'Yn)‘ Pyi -+ Pyn
n=1 """ (y1,...;7n)EP™
converges. Within this region
» No =4 has a zero
» Explicit series expressions for free energy and correlations
» Explicit J-mixing
» Central limit theorem

Penr
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Associated polymer models

Associated polymer model = same partition ratios
More precisely,

znodel(param.) = consty EROlymer(z)

(consty ~ alM).
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Associated polymer models

Associated polymer model = same partition ratios

More precisely,

znodel(param.) = consty EROlymer(z)

(consty ~ alM).

Useful observation: Distributivity property
If S finite set and (¢q)acs, (Ya)acs complex-valued:

[Tlva+¢d = > [[ee I] #a

acesS ACS acA acS\A

Penr



Recap Geom CE HT Dual Potts Chrom Markov Cont Trunc

Models at high temperature

exp{-8 Y da@)} = [ [1+@79@ -1

A€eBp AeBp

= Y [ (e )

BCBp AeB

Penr
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Models at high temperature

exp{-8 Y da@)} = [ [1+@79@ -1

A€eBp AeBp

= Y [ (e )

BCBpy AeB

Separating B into connected (w.r.t. overlapping) components,

S, X I ey @

n>0 " (Bi...Bn)CBY i=17Bi AeB; z€UB;

B conn.

< [0

1<j
[B = support of B = U{B: B ¢ B}]

Penr
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High-temperature expansion

Hence

for the polymer system with
» P = {connected finite subsets of bonds}
» B~B if BB =10

Penr
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High-temperature expansion

Hence

for the polymer system with
» P = {connected finite subsets of bonds}
» B~B if BB =10

| 2
ﬁ¢A
pg(dws)
5= [ TI 1) @ ()

AeB zeB

(small at small 3, i.e. large temperature)

Corresponding cluster expansion = high-temperature expansion

Penr
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HTE for Ising ferromagnets
Obtained by exploiting in

7= 3 I e

wp BEB)

the observation

e—ﬂJBWB — COSh(/BJB)+wB Slnh(ﬂJB)

Penr
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HTE for Ising ferromagnets
Obtained by exploiting in

7= 3 I e

wp BEB)

the observation
e Ppel cosh(BJ5) + w? sinh(3J5p)

to get

Zyn = [H cosh(ﬂJB)] Z H [1 + wP tanh(8.Jp)

BeB) wp BeB)

Penr
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HTE for Ising ferromagnets
Obtained by exploiting in

7= 3 I e

wp BEB)

the observation
e Ppel cosh(BJ5) + w? sinh(3J5p)

to get

Zyn = [H cosh(ﬂJB)] Z H [1 + wP tanh(8.Jp)

BeB) wp BeB)

— [ H cosh(ﬁJB)] Z Z H wBtanh(ﬁJB)

BeBp BCBy wa BeB

Penr
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Group of cycles

But
H (_,L)B e (_UZBGB
BeB

with ) =symmetric difference

Penr
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Group of cycles

But
BeB

with ) =symmetric difference, and

B oAl if B=10
> W=
0 otherwise
wa

Penr
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Group of cycles

But
BeB

with ) =symmetric difference, and
ZWB [ 2N i B =10
10 otherwise
wa

Hence

Zy = 2|A|[ H cosh(ﬁJB)] Z H tanh(8Jp)

BeBp BCK\ BeB

Kn = {BeBy: > B=0}

BeB

with

Penr
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Ferromagnetic HT polymer model
The maximally connected elements of KCp are the cycles

(K is a group for “> 7, generated by the cycles)
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Ferromagnetic HT polymer model
The maximally connected elements of ICp are the cycles
(KA is a group for “>77, generated by the cycles)

Factorizing the contribution of cycles,

Zn = 2|A|[ H cosh(ﬂjg)} =T
BEBA
for the polymer system with
» Polymers P = { cycles}
» Consistency: B~ B if BNB' =10

Penr
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Ferromagnetic HT polymer model
The maximally connected elements of ICp are the cycles
(KA is a group for “>77, generated by the cycles)

Factorizing the contribution of cycles,

Zn = 2|A|[ H cosh(ﬂjg)} =T
BEBA
for the polymer system with
» Polymers P = { cycles}
» Consistency: B~ B if BNB' =10

» Fugacities (small at small [3)

zB = H tanh(8Jp)

BeB

Penr
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LTE vs HTE for Ising ferromagnets

Zn = |Sal [H 62‘]5} = (M)

BeBj
Zy = 2|A[ H cosh(ﬂJB)} =Rz
BeB)

(S = symmetry group = {x : x® =1 for all B € Bp})

Penr
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LTE vs HTE for Ising ferromagnets

Zn = |Sal [H 62‘]3} = (M)

BeBj
n = 2|A[ H cosh(ﬁJB)} =Rz
BeB)
(S = symmetry group = {x : x® =1 for all B € Bp})
PLY =Cp = {contours} , PR =Kp = {cycles}

(contour = connected set of excited bonds, cycle = set of bonds
covering each site an even number of times)

Penr
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LTE vs HTE for Ising ferromagnets

Zn = |Sal [H 62‘]3} = (M)

BeBj
n = 2|A[ H cosh(ﬁJB)} =Rz
BeB)
(S = symmetry group = {x : x® =1 for all B € Bp})
PLY =Cp = {contours} , PR =Kp = {cycles}

(contour = connected set of excited bonds, cycle = set of bonds
covering each site an even number of times)

2 = exp{—2ﬂz JB}

BeB

2y = Htanh(BJB)

BeB

Penr
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HT-LT duality

Let us absorb § into the couplings Jp

(A*, B}, (JB)Bepy) is the HT-LT dual of (A, B, (JB)Bes, ) if
there exists a surjective map D : By — B} such that

Penr
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HT-LT duality

Let us absorb § into the couplings Jp
(A*, B}, (JB)Bepy) is the HT-LT dual of (A, B, (JB)Bes, ) if
there exists a surjective map D : By — B} such that
(i) The map B
D P(Bxr) — P(B})
D(B) = UpepD(B)

induces a surjection (bijection) ICn — Cj
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HT-LT duality

Let us absorb § into the couplings Jp
(A*, B}, (JB)Bepy) is the HT-LT dual of (A, B, (JB)Bes, ) if
there exists a surjective map D : By — B} such that
(i) The map B
D P(Bxr) — P(B})
D(B) = UpepD(B)
induces a surjection (bijection) ICn — Cj
(ii) For each B* € B}

e 25 = H tanh(Jp)
BeD-1(B*)

Penr
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Dual systems

For HT-LT duals

Cont Trunc

Zy = 2 s [H cosh(JB)H I1 e*%*} Zx.

BeB B*cB*

Penr
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Dual systems

For HT-LT duals
Zy = 2 s [H cosh(JB)H I1 efﬂz*} Zx.

BeB B*cB*

Hence:
convergent C.E. for Z}. <= convergent C.E. for Z,

That is,
analyticity of f* <= analyticity of f

Penr
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Construction of HT-LT duals

» Consider a family {Bj,..., By} of generators of Ky
» Associate to each B; a site x] € A*

» Define
D(B) = {z]: B; > B}

Penr
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Construction of HT-LT duals

» Consider a family {Bj,..., By} of generators of Ky
» Associate to each B; a site x] € A*

» Define
D(B) = {z]: B; > B}

In particular
» Regular 2-d Ising is self-dual

» Ising with four body has as dual the usual Ising

Penr
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Construction of HT-LT duals

» Consider a family {Bj,..., By} of generators of Ky
» Associate to each B; a site x] € A*

» Define
D(B) = {z]: B; > B}

In particular
» Regular 2-d Ising is self-dual

» Ising with four body has as dual the usual Ising

Comments
> Strong duality: K = C}
» Similarly there are LT-HT, HT-HT and LT-LT duals

Penr
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Potts model

L any (eg. Z%), E = {1,...,q}, F =discrete, up =counting

_ _ny (5wzwy - 1) if B= {l‘,y} n.n.
opWw) = { 0 otherwise
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Potts model

L any (eg. Z%), E = {1,...,q}, F =discrete, up =counting

_ _ny (5wzwy - 1) if B= {Zl?,y} n.n.
opWw) = { 0 otherwise

> Oleyy = J if we # wy, 0 otherwise
» If ¢ = 2, Potts=Ising

Penr
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Potts model

L any (eg. Z%), E = {1,...,q}, F =discrete, up =counting

_ _ny (5wzwy - 1) if B= {Zl?,y} n.n.
opWw) = { 0 otherwise

> Oleyy = J if we # wy, 0 otherwise
» If ¢ = 2, Potts=Ising

ZPotts /87 Z H ﬂJzy Suwgwy —1)

WA {z,y}CA

Penr
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The FK trick

Crucial observation:

eﬁJz y(éwzwy _1) = 5wquy + e_IBJz Y (1 - 60way)
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The FK trick

Crucial observation:

eﬁJz y(éwzwy _1) = 5wny + e_IB‘]T Y (1 - 6wchy)

(1- pzy) + Day 5wzwy

with py, =1 — e Pley,

Trunc

Penr
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The FK trick

Crucial observation:
eﬂJzy((swquy—l) = 5wxu)y + e_ﬂJzy(]‘ - 6wacwy)
(1 - pmy) + Pxy 5wlwy

with py, =1 — e #Jev. Hence

ZPOttS ﬂ’ Z H |: ]_ —pxy +pxy 5szy:|

wA {z,y}CA

Penr
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The FK trick

Crucial observation:

eﬁJzy(éwzwy_l) = (5wquy + e_ﬂJzy(l - 6‘09@“@)
(1 - pry) + Pay 5W1Wy

with py, =1 — e #Jev. Hence

ZKOttS(67Q) = Z H [1_pxy +pxy5wzwy}

wa {z,y}CA
- Z Z H Ouwguwr H Day H (1 = pay)
wa BCB{zy}eB {zy}eB  {z,y}¢B

(B = bonds)

Penr
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The FK expansion

Z H 5UJZUJy = qC(B)

wp {z,y}eB
with C(B) = # connected components of B,

ZPotts 57 Z qC(B H Dy H (1 _pxy)

BcCB {z,y}eB {z,y}¢B

» ¢ = 1: regular (independent) bond percolation in Z%

» ¢ > 1: dependent percolation due to ¢¢B)

Penr
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Z/F\)Otts (/87 q)

Dual Potts Chrom Markov Cont Trunc
FK model

_ C(B) Dz y

[ v S0 IT 250

{z,y}eB BcCB {z.y}eB

IT @ _pxy):| Z3\"(q,v)

{z,y}eB

Penr
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FK model

Z/lzotts(ﬂ7q) = { H (l_pwy):| ZqC(B) H Py

{z,y}eB BcB {z,y}eB 1= Pay

= [ 11 0-p)] ZE5Ga0)

{z,y}eB
with
Z8(g0) = Y ¢“PB J] vay
BcCB {z,y}eB
and
Vgy = Pov ePlev 1

1 _pxy

Penr
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FK polymer model

(Also called random-cluster model)
Reorder the sum:

» Each B defines a graph G = (Vp, B)
» Let G; = (V;, B;), i =1,...,k connected components

Penr
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FK polymer model

(Also called random-cluster model)
Reorder the sum:

» Each B defines a graph G = (Vg, B)
» Let G; = (V;, B;), i =1,...,k connected components

» The vertex sets are disjoints: V; N V; =0 if i # j
» The sets of bonds B; are such that each G; is connected

Penr
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FK polymer model

(Also called random-cluster model)
Reorder the sum:

» Each B defines a graph G = (Vg, B)
» Let G; = (V;, B;), i =1,...,k connected components

» The vertex sets are disjoints: V; N V; =0 if i # j
» The sets of bonds B; are such that each G; is connected

Furthermore
C(B) = k+ # isolated points
= k+[A[=) |V
= A=) (Vil-1)

Penr
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High-g expansion

Then

Z3%(q,v) 1 ~(IVil-1)

B D O DS H > Il v
k>0 T (1,....vp)enk i=1 BiCBy; {zy}e€B;

disjoints (V;,B;) conn.
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High-g expansion

Then
k
Z3"(q,v) 1 ~(Vil-D)
S i Or- D DR U (D Dy | O
kZO (A2 Vk)EAk =1 B, CBV {x»y}eB
disjoints (V;,B;) conn.
- =)

FK geometrical polymer system: P = {V cC L},

wo=qg DS I v

BCBy x cB
(v, B)connected { 7y}

decreases as ¢ — oo (or as § — 0)

Corresponding cluster expansion = high-q (high-T') expansion
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Chromatic polynomials

Given a graph G = (V(G), E(Q)):
Ps(q) = # ways of properly coloring G with ¢ colors

“properly” = adjacents vertices have different colors

Penr
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Chromatic polynomials
Given a graph G = (V(G), E(G)):
Ps(q) = # ways of properly coloring G with ¢ colors

“properly” = adjacents vertices have different colors

Ifw:V(G) — {1,...,q} denote colorings

Paa) = >, I [1-duu)]

w {zy}eE(G)

Penr
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Chromatic polynomials
Given a graph G = (V(G), E(G)):
Ps(q) = # ways of properly coloring G with ¢ colors

“properly” = adjacents vertices have different colors

Ifw:V(G) — {1,...,q} denote colorings

Paa) = >, I [1-duu)]

w {z,y}€E(G)
Introduced by Birkhoff (1912) to determine
Xg = min{q : Pa(q) > 0}

chromatic number = minimal ¢ for a proper coloring

Penr
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Tutte polynomial

Slight generalization: (—1) — vay

Pa(q,v) = Z H [1 —i—vxyéwxwy]

w {zy}ek(G)

Penr
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Tutte polynomial

Slight generalization: (—1) — vay

Pa(q,v) = Z H [1 + vazy(swxwy]

w {zy}ek(G)

» Dichromatic polynomial
» Dichromate
» Whitney rank function

» Tutte polynomial

Penr
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Tutte polynomial

Slight generalization: (—1) — vay

= Z H {1—1—1};,;?,5%%]

w {zy}ek(G)

» Dichromatic polynomial
» Dichromate
» Whitney rank function

» Tutte polynomial

For us
Pa(g,v) = Zy%(g,v) = ¢ ER"(2)
This identity proves that Pg(g,v) is a polynomial in ¢

Penr
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Chromatic numbers and cluster expansions

If J.y < 0 (antiferromagnetic Potts model)

=ePev 11— —1

Vzy [B—00
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Chromatic numbers and cluster expansions

If J.y < 0 (antiferromagnetic Potts model)

ny:eﬁjwy_1—> -1

f—00
Hence
Polq) = Z§%(q,—1) = ¢ =5 (z7)
with
z, = q7(|V|—1) Z (_1)\BI
BCBy
(V,B) conn.

Region free the zeros of P;(q) — bound on x¢
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Inhomogeneous Markov chains
Let (X,)n>0 be a Markov chain, X,, :  — E, characterized by

pn(xnfl,xn) = P(Xn = Tn | Xn-1 = xnfl)
po(z) = P(Xo=uz)

Denote

Plo,n) (zg) = po(xo) p1(zo, 1) - - Pu(Tn—1,2n)
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Inhomogeneous Markov chains
Let (X,)n>0 be a Markov chain, X,, :  — E, characterized by

pn(wnfl,l‘n) = P(Xn = Tn | Xn-1 = xnfl)
po(z) = P(Xo=uz)

Denote
Plon) (908) = Po(l‘o)m(ﬂﬁo, 5131) o 'Pn(xn—l, wn)
Consider a : E — R,

Sn(zg) = Qo)

and the characteristic function

Onl€) = Y plo(ap) &5 0)

n
Lo
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Polymer representation (Dobrushin)

RENCH - ﬁ[ oSale) _ )}

=0
.y O 1 (eéoe0 1)
k la1,b1], s lag.b]  £=a;

0<a;<bj<n, b;j<a;t]

Penr
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Polymer representation (Dobrushin)

RENCH - H[l + (eSol@n) — 1)}
i=0
b;
-y I1 I1 (ega@:w _ 1)
k la1,01],slag bl f=a;
0<a;<b;j<n , b;<a;41
Hence
$n(€) =Y. Y. PoaXianbPbiaz)  XlaxbrPloen]
Tab [a1,b1],,[ak,bk]

where

b

X[a,b] (Ta, 1) = Z Pla+1,b—1) (»’52111) H(ega(m - 1)
b—1 i=a

xa+1

Penr
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Polymer representation (Dobrushin)

Now
Plba) = [P[a,b] - pa] + Da
with pg(z,) = P(X, = x4).
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Polymer representation (Dobrushin)

Now
Plb,a) = [p[a,b] - pa} + Pa
with pa(x,) = P(X, = x4). Result:

on(z) =

[1]

[0,n]
with
P = {(979) = (alablaQQab27"'7akabk) :0 S a; S b’L S n, b’L < a’i+1}

and

Zap) = D Par Xavp] [Plosas)—Paz) Xlasba] *** [Plos_v.ae)—Par ) Xfaxbe]

x

Small if pp, 4 — pe and [€] small.
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Polymer representation (Dobrushin)

Now
Plb,a) = [p[a,b] - pa} + Pa
with pa(x,) = P(X, = x4). Result:

on(z) =

[1]

[0,n]
with
P = {(979) = (alablaQQab27"'7akabk) :0 S a; S b’L S n, b’L < a’i+1}

and

Zap) = D Par Xavp] [Plosas)—Paz) Xlasba] *** [Plos_v.ae)—Par ) Xfaxbe]

x

Small if pp, 4 — po and [€] small. Relaxation — CLT
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Generalization: Continuous polymer systems
More generally,
1 1
EED S e
(Y1551 )EPY A

where dv; - - - d7v, is an appropriate product measure



Trunc Penr

Recap Geom CE HT Dual Potts Chrom Markov Cont
Generalization: Continuous polymer systems
More generally,
1 1
LY = A e
n: PR

n!
(V1557 ) EPY
where dv; - - - dv, is an appropriate product measure That is, we

consider measures on »_ P" with projections on P"

| Z’le')’2 T Z’Yn H ]1{’7]'/\1’)%} d’Yl e d’yn

1
= n!
i<k

—
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Generalization: Continuous polymer systems
More generally,
1 1
EEED DIl I
n: PR

n!
(V1557 ) EPY
where dv; - - - dv, is an appropriate product measure That is, we

consider measures on »_ P" with projections on P"

| Z’le')’2 T Z’Yn H ]1{'7]'"’7}@} d’Yl e d’yn

1
= n!
i<k

—

where

- 1

n>1

/ Ry » v+ yp H ﬂ{'YjN'Yk} dm
P j<k
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Correlations and cluster expansions

The correlation functions are probability densities —with

respect to dyy - - - dy,— of finding polymers v, ..., Vn:

EP\ {1,y )
p(’Yl:"'afYn) = By Ry M

n

—_
—
—

Penr
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Correlations and cluster expansions

The correlation functions are probability densities —with

respect to dyy - - - dy,— of finding polymers v, ..., Vn:

EP\ {1,y )
p(FYl:"wan) = By Ry M

n

—_
—
—

The cluster expansion is the formal series such that

oo
— F 1
E=expi > = | 8 () e 2y dya e dom
nzln! pn

Penr
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Correlations and cluster expansions

The correlation functions are probability densities —with

respect to dyy - - - dy,— of finding polymers v, ..., Vn:

EP\ {1,y )
p(FYl:"wan) = By Ry M

n

—_
—
—

The cluster expansion is the formal series such that

oo
— F 1
E=expi > = | 8 () e 2y dya e dom
nzln! pn

Usually P — Py for labels A s.t. the limit A — oo is of interest

Penr
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Example: Classical continuous gas

Basic setting

» Particles moving in a continuous space S (e.g. S = R9)
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Example: Classical continuous gas

Basic setting

» Particles moving in a continuous space S (e.g. S = R9)

» Initially particles in a box A CC S, eventually A — S
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Example: Classical continuous gas

Basic setting

» Particles moving in a continuous space S (e.g. S = R9)
» Initially particles in a box A CC S, eventually A — S

» Particles are distinguishable, but interest focuses on which
points are occupied and not by whom
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Example: Classical continuous gas

Basic setting

» Particles moving in a continuous space S (e.g. S = R9)
» Initially particles in a box A CC S, eventually A — S

» Particles are distinguishable, but interest focuses on which
points are occupied and not by whom

Hence:

» Configuration: momenta and positions of particles in a box
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Example: Classical continuous gas

Basic setting

» Particles moving in a continuous space S (e.g. S = R9)
» Initially particles in a box A CC S, eventually A — S

» Particles are distinguishable, but interest focuses on which
points are occupied and not by whom

Hence:

» Configuration: momenta and positions of particles in a box

» There is a 1/n! factor averaging permutations among sites
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Ingredients of a continuous systems

» FEnergy of n particules of momenta p; and positions x;:

no 9
H(piy .oy Dy @1y oy Ty) = —m—i—U(xl,...,xn)

where U is the configurational Hamiltonian

Uzy,.zn) = > da((@ica)

AcC{1,...,n}

» Gibbs chemical potential pu (acts as a “field”)

Penr
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Grand canonical ensemble

Measures on Y [(R?)" x A"] (with A CC S), s.t. projected on
(RH™ x A™:
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Grand canonical ensemble

Measures on Y [(R?)" x A"] (with A CC S), s.t. projected on
(RH™ x A™:

ElAei:;n ilf[l[exp(—ﬁfi)dpi] exp [—6 U(xi,...,xn)|dxy - dxy
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Grand canonical ensemble

Measures on Y [(R?)" x A"] (with A CC S), s.t. projected on
(RH™ x A™:

ElAei:;n ilf[l[exp(—ﬁ;i)dpi] exp[—ﬁ Uz, ... ,xn)}dxl coodoy
with
7 = S [ Lew(og )]

X /nexp[—BU(xl,...,xn)]dxl--'da:n
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Configurational ensemble

If no questions on momenta,

fow(sgiymn = (5)
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Configurational ensemble

If no questions on momenta,

feom(sgi)an = (5)

and ensemble reduces to a measure on ), A" with projections

1 2"
ZfAHeXp{—ﬁU(xl,...,xn)]dxl...dxn
with
Z'fl
ZA = Zn!/I;neXp{_,BU(xl,...,xn)]dxl...dxn

n>0

and

Y (27rm)d/2
B

Penr
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Gas of hard spheres

Points = centers of spheres of diameter R:

on(z z2) = oo ifn=2and |x; —x2| <R
nATh et ) T Y 0 otherwise



Recap Geom CE HT Dual Potts Chrom Markov Cont Trunc

Gas of hard spheres

Points = centers of spheres of diameter R:

on(z z2) = oo ifn=2and |r; —z2| <R
nATh et ) T Y 0 otherwise

This gives a continuous polymer system with

» Polymers = centers of spheres in A:

P = Pr = {z€A:dist(z,S\ A) > R/2}

Penr
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Gas of hard spheres

Points = centers of spheres of diameter R:

on(z z2) = oo ifn=2and |r; —z2| <R
nATh et ) T Y 0 otherwise

This gives a continuous polymer system with

» Polymers = centers of spheres in A:

P = Pr = {z€A:dist(z,S\ A) > R/2}

» Compatibility = non-intersection of spheres

xwy < |lz—y| <R

Penr
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Cluster expansions - Classical strategy

Recall: Write

1
Ea(z) =1 +ZE Z By Ry v v By HH{W]N%}

n>1"" (1, m)EPR i<k
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Cluster expansions - Classical strategy

Recall: Write

=1+ Z Z RBy1Ry2 =+ Ry H ﬂ{%‘N%}

21" (.. ) EPR i<k
as a formal exponential of another formal series in (2y) ep

SINE 2 {Z ol Z ¢T('Yl>-~-77n)z'yl"'2%}

n=l" (y1,...,7n)EPY

The series between curly brackets is the cluster expansion

Penr
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Cluster expansions - Classical strategy

Recall: Write

=1 + Z Z Z’le’Y2 e Z’Yn H ]1{7]”%}

TL>1 ('Ylv 7’Yn)€PA j<k
as a formal exponential of another formal series in (2y) ep
—_ F T
Er(z) = {an Z ¢ (’717-.-777'7/)2')/1...2,\,”}
n=1 " (y1,.sn)EPR

The series between curly brackets is the cluster expansion

Need somme formal-series algebraic handling

Penr
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Multiplicity functions

In general, we are dealing with series of the form

1
F(Z) = ZE Z a(’)/l?"'aFYTL)Z’Yl”'Z’Yn

n20 " (Y1,7m) EPT

Penr
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Multiplicity functions

In general, we are dealing with series of the form

1
F(Z) = ZE Z a(’)/l?"'aFYn)Z’Yl"'z’Yn

n>0 " (y1,..7n)EP™
Let us not assume anything about the coeflicients other than

a(Y1,...,7Yn) is symmetric under permutations of (y1,...,vy)

Penr
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Multiplicity functions

In general, we are dealing with series of the form

= Z% Z a('Yl»-"a'Yn)Z’n"'Z’yn

n20 " (Y1,.7m)EP™
Let us not assume anything about the coeflicients other than
a(Y1,...,7Yn) is symmetric under permutations of (y1,...,vy)
Therefore, a(vy1,...,7v,) is a fen. of the multiplicty function:
M P _—, NP)

(M-, = #{ivi =7}

Penr
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Exponential generating functions

Let a(a) = a(y1,..., ) if M(71,...,7) = «



Recap Geom CE HT Dual Potts Chrom Markov Cont Trunc

Exponential generating functions

Let a(a) = a(y1,...,7n) if M(71,...,7) = a. Then

F(z) = Z% Z a(a) No 2%

n>0  o|al=n

where |a| =} oy and

No = {(71,...,7|a|) M (Y155 Ye)) = a}

Penr
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Exponential generating functions
Let a(a) = a(y1,...,7n) if M(71,...,7) = a. Then
1 «
F(z) = Z ] Z a(a) No 2
n>0 a:|al=n
where |a| =} oy and
No = {(71,--~77|a|) M (1, Ye)) = a}

ol _ Il

[, ! al

Penr
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Exponential generating functions
Let a(a) = a(y1,...,vn) if M(m,...,7) = a. Then
1 «
F(z) = Z ] Z a(a) No 2
n>0 a:|al=n
where |a| =} oy and
No = {(717--~77|a|) M (1, Ye)) = a}

ol _ Il

[, ! al

Then
F(z) = Z oa) z*

o!
(0%

Multivariate exponential generating function

Penr



Recap Geom CE HT Dual Potts Chrom Markov Cont

The truncated coefficients

The problem

Given functions a(a), find functions a¥ () s.t.
al@) o at(B) g
e, :exp{z Fap

@ B

Then, aT('yl, oy Yn) =at (M(’yl, .. ,'yn))

Trunc

Penr
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The truncated coefficients

The problem

Given functions a(a), find functions a¥ () s.t.
al@) o at(B) g
o uel, :exp{z Fap

@ B

Then, a¥(v1,...,7) = a’ (M(’yl, e ,'yn))

The key relation
Equating coefficients of z¢

a(a 1 baT i
eyn ¥ Iy o

kZl ’ (ﬁlv“'nﬂk) i=1

Penr
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Algebraic facts

Key observation 1:

Previous expression uniquely determines a™:

laf =1 a(y) = a

Trunc

Penr
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Algebraic facts

Key observation 1:

Previous expression uniquely determines a™:
o =1 a(y) = a'(y)
la| =2 a(y,72) = a'(y1,72) +a’(n)at (12)
= a'(n,72) +aln)alr)

lal =n ... (induction)

Penr
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Algebraic facts

Key observation 1:

Previous expression uniquely determines a™:
o =1 a(y) = a'(y)
lal =2 a(y,72) = a'(n,m2) +Hat(n)a" (1)
= a'(n,72) +aln)alr)

lal =n ... (induction)

Key observation 2:
Better to go back to n-tuples

Ead

aT )
a(yl,...,%):a12% S O] 5(7!1)

k21" (B By) i=1

Bi=a

{I1,..., I} partition of {1,... ,n} (subsegs.) s.t. 3; = M (v1,)

Penr
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Number of partitions

Q: How many partitions {Iy, ..., I} satisfy 8, = M (vz,)?
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Number of partitions

Q: How many partitions {Iy, ..., I} satisfy 8, = M (vz,)?

Preliminary example: a., = n and a, = 0 for v # 79
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Number of partitions

Q: How many partitions {Iy, ..., I} satisfy 8, = M (vz,)?

Preliminary example: a., = n and a, = 0 for v # 79
Then (,81-)70 = m,; and (,81-)7 =0 for v # Yo

Penr
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Number of partitions

Q: How many partitions {Iy, ..., I} satisfy 8, = M (vz,)?

Preliminary example: a., = n and a, = 0 for v # 79
Then (,81-)70 = m,; and (,81-)7 =0 for v # o and

#{partitions {I,...,I;} with ‘Ii|:mz} - ( " )
ml ... mk

Penr
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Number of partitions

Q: How many partitions {Iy, ..., I} satisfy 8, = M (vz,)?
Preliminary example: a., = n and a, = 0 for v # 79

Then (,81-)70 = m,; and (,81-)7 =0 for v # o and

#{partitions {I,...,I;} with ‘Ii|:mi} - < " )
ml ... mk

More generally: o, =nq,...,a,, = ng, otherwise a, =0
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Number of partitions

Q: How many partitions {Iy, ..., I} satisfy 8, = M (vz,)?

Preliminary example: a., = n and a, = 0 for v # 79
Then (,61-)70 = m,; and (,61-)7 =0 for v # o and

#{partitions {I,...,I;} with ‘Ii|:mi} - < " )
ml ... mk

More generally: o, =nq,...,a,, = ng, otherwise a, =0

4
Do the same for each n;:

.. ny ny o!
# partitions = ( )( ) = —
m%m}c ml{mi B! By
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Defining relation

Bottom line: If ¢ and a’ are perm.-sym. and satisfy:

a('yla---a')/n) = Z Z aT('yfl)"'aT(’YIk)

E )
part. of {1,...,,n}

Penr



Recap Geom CE HT Dual Potts Chrom Markov Cont Trunc

Defining relation

Bottom line: If ¢ and a’ are perm.-sym. and satisfy:

a('yla---a')/n) = Z Z aT('yfl)"'aT(’YIk)

ko (LD
part. of {1,...,,n}

Then, as formal power series,

1+Z n Z 71""77n)z’}/1"'z’7n

nzl o (y1,057n)

= exp{zn, Z 71,---,%)271“'2%}

nzl o (y1,057n)

Penr
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Most popular case

a(vi, ) = [T o)
{i.g}
[p(vi, ;) = e BU): B — 0o for “hard-core”]
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Most popular case

a(vi, ) = [T o)
{3}
[p(vi, ;) = e BUOL): B — oo for “hard-core”]. Writing

o(vi,vj) = 1+ (90(%,7]-) - 1) = 1+, 7)

Penr
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Most popular case

a(y,--m) = [ o)
{i.g}
[p(vi, ;) = e BU): B — 0o for “hard-core”]. Writing
e, ) = 1+ (90(%,%) - 1) = 1490 7)
We have
a(yi,-m) = |1 [1 + 1/1(%-,7]-)]
{i.g}

= > IIv0e)

CCGn EEG

» G, =complete graph with vertices {1,...,n}
» Sum over (not necessarily spanning) subgraphs of G,
> E(G) = edge set of G

Penr
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Connected graphs and partitions

Decomposing each G into connected components,

a(1s-- -5 Yn) Z > H[ 1T @/we}

k=1 {G1,..,Gx} =1 ecE(Q)

conn. part. of Gy,

[G; can be a single vertex, [, = 1]

Penr
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Connected graphs and partitions

Decomposing each G into connected components,

a(1s-- -5 Yn) Z > H[ 1T @/)’Ye}

k=1 {Gi1,..Gx} i=1 ecE(G)

conn. part. of Gy,

[G; can be a single vertex, [y = 1]

Grouping graphs with same vertex set:

k

o =Y 1T Hw%]

k=1 {11771k} i=1 GCG] eGE(
part. of {1,...,n} conn. span.

Penr
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THE formula

Conclusion: If

a(yi,--m) = [ o)

{i.j}
then
aT('yl,.,.,'yn) = Z H 1#(%)
GCGyn  e€E(G)
conn. span.
with

Y(vi, ) = (Vi) — 1
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Truncated functions for hard core
For hard core:
=1 if 5

V(%) = Lfymyyy — 1 = { 0 if v~y
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Truncated functions for hard core

For hard core:

=1 if 5

V(% V) = Ly — 1 = { 0 if v~y

Hence: For each n-tuple (v1,...,7,) construct the graph
Q(Aﬂ’m’%) with V(G) ={1,...,n} and E(G) = {{Z]} Dy 'yj}

Penr
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Truncated functions for hard core

For hard core:

=1 if 5

V(% V) = Ly — 1 = { 0 if v~y

Hence: For each n-tuple (y1,...,7,) construct the graph

Q(Aﬂ,m’%) with V(G) ={1,...,n} and E(G) = {{Z]} Dy 'yj}
Then

1 n=1
(-)IE@I n>2, G conn.
(bT(’Yl? cee a7n) = GCY(y1,.vn)

G conn. spann.

0 n>2, G not c.

Penr
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Truncated functions for hard core

For hard core:

=1 if 5

1/1(%',’73') = ﬂ{%fvw}*l - { 0 if Yi ™~ V5

Hence: For each n-tuple (y1,...,7,) construct the graph

Q(Aﬂ,m’%) with V(G) ={1,...,n} and E(G) = {{Z]} Dy 'yj}
Then

1 n=1
(-)IE@I n>2, G conn.
¢T(’Yl7 cee a7n) = GCY(y1,.vn)

G conn. spann.

0 n>2, G not c.

This formula involves a huge number of cancellations

Penr
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Penrose identity

Penrose realized that these cancellations can be optimally
handled through what is now known as the property of
partitionability of the family of connected spanning subgraphs

Penr
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Penrose identity

Penrose realized that these cancellations can be optimally
handled through what is now known as the property of
partitionability of the family of connected spanning subgraphs

Theorem
For any connected graph G = (V,E) there exists a family of
spanning trees —the Penrose trees Tgpenr— such that

Z (_]_)|E(G)| — (_1)\V|71‘7-gPenr|
GCg



Recap Geom CE HT Dual Potts Chrom Markov Cont

Trunc

Partitionability of subgraphs

Let
» G = (U,E) a finite connected graph
» Cg = {connected spanning subgraphs of G}
» 7 = {trees belonging to Cg}

Penr
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Partitionability of subgraphs

Let
» G = (U,E) a finite connected graph
» Cg = {connected spanning subgraphs of G}
» 7 = {trees belonging to Cg}

Partial-order Cg by bond inclusion:

G<G <= E(G) cE®QG)

Penr
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Partitionability of subgraphs

Let
» G = (U,E) a finite connected graph
» Cg = {connected spanning subgraphs of G}
» 7 = {trees belonging to Cg}

Partial-order Cg by bond inclusion:

G<G <= E(G) cE®QG)

If G <G, let

Penr
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Partition schemes

A partition scheme for Cg is a map

R:TG g CG
T +— R(7T)
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Partition schemes

A partition scheme for Cg is a map
R:7; — Cg
T +— R(7T)
such that
(i) E(R(r)) D E(1), and
(ii) Cg is the disjoint union of the sets [r, R(7)], T € Tg.
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Penrose scheme

» Fix an enumeration vy, vy, ..., v, for the vertices of G

» For each 7 € 7 let d(i) = tree distance of v; to vy
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Penrose scheme

» Fix an enumeration vg,v1, ..., v, for the vertices of G
» For each 7 € 7 let d(i) = tree distance of v; to vy
> Rpen(T) is obtained adding to 7 {v;,v;} € E\ E(7) s.t.

(p1) d(i) =d(j) (edges between vertices of the same generation),

Penr
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Penrose scheme

» Fix an enumeration vg,v1, ..., v, for the vertices of G
» For each 7 € 7 let d(i) = tree distance of v; to vy
> Rpen(T) is obtained adding to 7 {v;,v;} € E\ E(7) s.t.

(p1) d(i) =d(j) (edges between vertices of the same generation),
or

(p2) d(i) =d(j) — 1 and i < j (edges connecting to predecessors
with smaller index).

Penr
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Penrose identity

For a partition scheme R, let

Tr = {7‘ e ‘ R(T) :7'}
(set of R-trees).
Proposition

Z(_l)IE(G)\ — (—1)W|_1‘TR]

GeCgq

for any partition scheme R

Cont

Trunc

Penr
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Proof of Penrose identity

For any numbers z., e € E,

> I we = X ITee > Il

GECs e€E(G) T€Tg ecE(T)  FCE(R(T))\E(r) e€F

Penr
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Proof of Penrose identity

For any numbers x., ¢ € E,

2. M we = > Ilw > ]l=

GECg ec E(G) T€lg e€E(t)  FCE(R(T))\E(7) e€F

S e I (e

T7€Tlg ecE(T) e€E(R(T))\E(T)

Penr
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Proof of Penrose identity

For any numbers x., ¢ € E,

> I we = X ITee > Il

GECg ec E(G) T7€Tg e€E(t)  FCE(R(T))\E(7) e€F

oI = II  (+a

T7€Tlg ecE(T) e€E(R(T))\E(T)

» If . = —1, the last factor kills the contributions of any
tree 7 with E(R(7)) \ E(7) # 0

Penr
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Proof of Penrose identity

For any numbers x., ¢ € E,

> I we = X ITee > Il

GECg ec E(G) T7€Tg e€E(t)  FCE(R(T))\E(7) e€F

oI = II  (+a

T7€Tlg ecE(T) e€E(R(T))\E(T)

» If . = —1, the last factor kills the contributions of any
tree 7 with E(R(7)) \ E(7) # 0
T)} =V]-1

Penr
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Comments
» Hard-core condition is crucial. If only soft repulsion,
|]- + $e| <1

and we get the weaker tree-graph bound

S w = X IT leel < 17

GeCg e€E(G) T7€Tg e€E(T)

Penr
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Comments
» Hard-core condition is crucial. If only soft repulsion,
|]- + $e| <1

and we get the weaker tree-graph bound

> I o = X Tl < 1%l

GeCg e€E(QG) T€TG e€E(T)

» The smaller the number of triangle diagrams, the larger the
number of Penrose trees. Hence:

R(G) DO R(tree with larger degrees)

O R(homogeneous tree with max. degree)

Penr
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