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Polymer models

Polymer configuration:

v = (7(0),...,7(n)): n.-n. path on Z% with v(0) = 0
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Polymer models

Polymer configuration:

v = (7(0),...,7(n)): n.-n. path on Z% with v(0) = 0

Internal energy:

®(7) =Y d(t(7))

xEeZd
# : N — R: nonnegative, nondecreasing, ¢(0) = 0
L () = D k=0 Ly (k)=a} (local times)
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Polymer models

Polymer configuration:

v = (7(0),...,7(n)): n.-n. path on Z% with v(0) = 0

Internal energy:

®(7) =Y d(t(7))

xEeZd
# : N — R: nonnegative, nondecreasing, ¢(0) = 0
L () = D k=0 Ly (k)=a} (local times)

Probability:
P, (7) o e~ ®()
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Classes of interactions

Two main classes of interactions:

Repulsive interactions

p(n +m) = ¢(n) + ¢(m)
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Classes of interactions

Two main classes of interactions:

p(n+m) > ¢(n) + ¢(m)

<

¢(n +m) < ¢(n) + ¢(m)

v

(and, w.l.o.g., lim,, o ¢(n)/n =0)
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Examples: repulsive interactions

Self-Avoiding walk (SAW)

oo ifl>1

0  otherwise
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Examples: repulsive interactions

Domb-Joyce model

Defined by

SN =6 Y, lym=G) (8=0)

0<i<j<n

This corresponds to the choice
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Examples: attractive interactions

Pn(’}/) o e—ﬁ~# of sites visited by v (6 > 0)

corresponds to the choice

3 ife>1
0 iff=0

UNIVERSITE
DE GENEVE

Yvan Velenik Statistical Physics of Stretched Polymers



Model and terminology Polymer models
Examples
ons and termin
\Y/[eYe! stretched p

Examples: attractive interactions

Reinforced Polymer

(Bk)k>1: non-negative, non-increasing sequence.

(1 = energetic cost associated to k™" visit at a site.
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Examples: attractive interactions

Polymer in Annealed Random Environment

Environment: (V),cz4, i.i.d. non-negative random variables

Quenched weight: w*(y) = e~ 2i=o () ()
Annealed weight: w,,(7) = Ew'(v)
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Examples: attractive interactions

Polymer in Annealed Random Environment

Environment: (V),cz4, i.i.d. non-negative random variables

Quenched weight: w¥(v) = e~ 2i=o () (@)
Annealed weight: w,,(7) = Ew'(7) = e~ ®0)

o(0) = —logEe=t J
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2-point function

Let || denote the length of ~.
For all z € Z4, the 2-point function

Gi(z) = Z e~ 2(M-ANl

v:0—x

is well-defined for all A > \g, where

1
A= lim ~log Y = e *0

n—oo n,
7(0)=0, |v|=n

is well-defined and finite (attractive case: Ao = log(2d)).

UNIVERSITE
DE GENEVE

Yvan Velenik Statistical Physics of Stretched Polymers



Model and terminology Polymer models
Examples
Notations and terminology
Model of stretched polymer

Inverse correlation length

Exponential decay of 2-point function
For all A > )¢ and all z € R%:

. 1
Ex(w) = Jim —-log G ([kz])

is a well-defined, equivalent norm on R<.
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Inverse correlation length

Exponential decay of 2-point function
For all A > )¢ and all z € R%:

. 1
Ex(w) = Jim —-log G ([kz])

is a well-defined, equivalent norm on R<.

This means that, for any x € Z¢,
G () = e=6x(me)ll (+o(1)

where n, = z/||z||.
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Inverse correlation length

Exponential decay of 2-point function

For all A > Ao and all z € R%:

. 1
Ex(w) = Jim —--log G ([kz])

is a well-defined, equivalent norm on R<.

Behaviour as A | A\g

=1
Exo Jim 3)

Repulsive: &,, =0 Attractive: &, > 0
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Stretched polymer

We are interested in the following probability measure on paths
7= (7(0),...,7(n)), v(0) = 0:

Pg(fy) o< €7¢(7)+<F’7(n)> J

where
—(F,7(n))

is the contribution to the polymer energy due to the force F' € R?¢
acting on its free end.
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Main problems

@ Determine whether the polymer is collapsed or stretched.
@ When stretched, determine the distribution of its free end.
@ When stretched, describe the fluctuations of the polymer.

@ When stretched, describe the micro structure of the polymer.
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Some additional results
Ideas of proof

Waulff shape

For all A > Ag:
K, — {F R : (F2) < &\(x), Vo € Rd}
(Alternatively, K} is the unit-ball in polar norm.)

Increasing family of convex bodies
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Waulff shape

For all A > Ag:
K, — {F R : (F2) < &\(x), Vo € Rd}
(Alternatively, K} is the unit-ball in polar norm.)

Increasing family of convex bodies

Behaviour as A | Ag

Repulsive: K, = {0} Attractive: K, # @
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Some additional results

Ideas of proof

Phase transition

Attractive case: Transition between a collapsed phase and a
stretched phase.
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Phase transition

Attractive case: Transition between a collapsed phase and a
stretched phase.
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Ideas of proof

Phase transition

Attractive case: Transition between a collapsed phase and a
stretched phase.
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Phase transition in the attractive case
Stretched phase of selfinteracting polymers Geometry in the stretched phase

Some additional results

Ideas of proof

Phase transition

Attractive case: Transition between a collapsed phase and a
stretched phase.

Attractive case — Collapsed phase

For all F' € IO{AO,HC > 0 such that

P, (37(n) € Be(0)) < e

for all e > 0 and n > ng(e).
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Ideas of proof

Stretched phase

We turn to the description of the stretched phase, ' ¢ K.
The results hold for both attractive and repulsive interactions.

(Remember that K, = {0} in the repulsive case, so an arbitrary
force F' # 0 results in a stretched polymer.)
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Stretched phase — position of endpoint

There exists i € RY, oy # 0, such that

with probability > 1 — e™""
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Ideas of proof

Stretched phase of selfinteracting polymers

Stretched phase — position of endpoint

For all = € B.(vp) N 224,

PE <7(nn) = x> = C\j%? e @) (1 4 o(1)).

G: positive and analytic on B(vF)
Jp: positive, analytic on B(vr), and strictly convex
with a non-degenerate quadratic minimum at vp
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Stretched phase — Path fluctuations

This can be complemented by an invariance principle under

diffusive scaling. g
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Stretched phase of selfinteracting polymers Geometry in the stretched phase

Some additional results
Ideas of proof

Stretched phase — Path fluctuations

This can be complemented by an invariance principle under
diffusive scaling. —
v nvF

The covariance of the limiting (d — 1)-dim. Brownian motion on
[0,1] is related to the geometry of K, where X is uniquely
determined by F € 0K,. bE CEREVE
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Some additional results

Ideas of proof

Stretched phase — Microscopic structure
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Stretched phase — Local observables

One can also obtain local limit theorems for local observables.
As an example, let us consider a pattern 7, e.g.,

How many times does this pattern appear along the polymer? sz
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Stretched phase — Local observables

Let N, () be the number of apparitions of 7 along 7.

Jx, € (0,1), € >0, v > 0 and a rate function J}. on
(x, — €,z + €) with quadratic minimum at z,), such that

N,
Pf (‘77(7) —
n

and, for x € (x, — €,z + ¢€),

PE (Ny() = na) = T2 IR (14 o),

where G, is a positive real analytic function on [z, — €, z, + €.
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Stretched phase of selfinteracting polymers

Stretched phase — Perturbations

The previous results are stable under small, smooth, local
perturbations of the internal energy ®. For example, if one
considers the internal energy

®(7) = () + R(y, F),
with
e f— R(v, f) analytic in a neighbourhood of F, for each ~.

o |R(7, f)| < e€|y| for f in a neighbourhood of F, for all ~.
@ Some locality assumption, e.g.,

R(viU---Uym, f) = > R(vi, f), whenever the subpaths
are edge-disjoint, for all f in a neighbourhood of F.
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Stretched phase of selfinteracting polymers

Stretched phase — Perturbations

Two main applications of this stability are

e Models with mixed attractive/repulsive interactions (e.g.,
strong repulsion, weak attraction).

e Dynamical processes (e.g., random walk with drift, with small
edge reinforcement).
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Ideas of proof

Clearly,
’ B2 G (2;n)

Y PGy

yeZ

where

G(z;n) = Z e~

v:0—x
[v|=n

We need to control this quantity!
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Irreducible decomposition of G (x)

For any A > g,
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Irreducible decomposition of G (x)

For any A > g,

UNIVERSITE
DE GENEVE

Yvan Velenik Statistical Physics of Stretched Polymers



Phase transition in the attractive case
Geometry in the stretched phase
Some additional results

Ideas of proof

Irreducible decomposition of G (x)

Stretched phase of selfinteracting polymers

For any A > g,
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Geometry in the stretched phase
Some additional results
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Stretched phase of selfinteracting polymers

Irreducible decomposition of G (x)

For any A > g,

e Q'=QL®Qr® -, Q.
@ Q is a probability measure on irreducible pieces.

@ D has exp. moments under Q, Q, and Qg.
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Some additional results

Ideas of proof

Irreducible decomposition of G (x)

For any A > g,

> Q¥(D(w)+ D> D(%)+ D) = z)
m>c||z|| =1

e D(v1) and D(+g) are typically small.

@ D(v;),i=1,...,m, are i.i.d. with exp. tails.

o m > c|z|.

@ — Asymptotics of G using local limit theorem!
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Some additional results

Ideas of proof

Asymptotics of G ()

Let n, = z/||z|.

Asymptotics of G (z)
For all A > Ag,

= Ty ¢ O @+ olt)

G ()

uniformly as ||z|| — oo.
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Geometry in the stretched phase
Some additional results

Ideas of proof

Stretched phase of selfinteracting polymers

Irreducible decomposition for general observables

The same remains true for any observable defined on paths: if S is
such an observable, then, for any A > )y,

A (@) Z e *=A = o(e~vl=lly 4

v: 00—z
S(v)=s

> QD) ==2,5(1) =)

m2c|lz||
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Stretched phase of selfinteracting polymers

Irreducible decomposition for G(z;n)

In particular, if

S() = S(n) + D S() + S(m),
i=1
then
eSA (@) Z e ®M=A = o(e~vl=lly 4
v:0—x
S(v)=s
Y. QCF(w) + ) Flw) +FOr) = (z,9))
m>c||z|| =1 )
where F'(y) = (D(7),5(7)). et
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Irreducible decomposition for G(z;n)

Now, let A > A\g be s.t. ' € 0K, and let x be s.t.
(F.z) = &\(x)
We then have
P2 Gz n) = PG (2 n)

and the previous result applies with S() = ||, yielding the
desired asymptotics. In particular,

__ QDH)
UF = Q) -
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Quenched disorder

Diffusivity in weak quenched random environment

Quenched disorder

As explained before: precise results about the stretched phase for
polymers in an annealed random potential. What happens in the
quenched case?

Lot of progress recently, for a fully directed version of this model.

Most works rely heavily on specific martingale structures present
in this version of the model.
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Quenched disorder

For x € Z¢, we write z = (2*, ), with z* € Z%! and 2! € Z.
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Quenched disorder

For x € Z¢, we write z = (2*, ), with z* € Z%! and 2! € Z.

For N € N, Let Dy be the set of n.n. paths v = (7(0),...,v(n))
on Z4, n € N, such that

e v(0) =0,
o y(n) e Ly ={z €z : a2l =N}.
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Quenched disorder

We associate to v € Dy the weight
Wys(y) = = exp{—Al7| — ﬂz Ve(y(0)},

where A > \g = log(2d), > 0, and the random environment
{V¥ ()} eza is assumed to be i.i.d. and s.t.

e 0 € supp(V¥) C [0, oc];
e p=P(V¥ = o0) is sufficiently small.
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Quenched disorder

We associate to v € Dy the weight
Wys(y) = = exp{—Al7| — ﬂz Ve(y(0)},

where A > \g = log(2d), > 0, and the random environment
{V¥ ()} eza is assumed to be i.i.d. and s.t.

e 0 € supp(V¥) C [0, oc];

e p=P(V¥ = o0) is sufficiently small.
In particular, the annealed weight E(WY 5(7)) is attractive, and
the vertices = at which V¥(z) = oo do not percolate (a.s.).
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Quenched disorder

We introduce the quenched and annealed partition functions

v€DN
Dy(y) = EDR.

For this model, it was shown in [Flury '08, Zygouras '09], under
somewhat stronger assumptions on the potential, that the
corresponding free energies coincide

1 w e oo 1 w
TN, 8PN == i iy e DR

when d > 4 and 3 is small enough (and p = 0). -
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Quenched disorder

Our first result is the following strengthening of the latter
statement (under our weaker assumptions on V):

Assume that d > 4, and 8 and p are small enough. Then the limit

w
= lim =&
N—o0 DN

exists P-a.s. and in L2
Moreover, 9“ > 0, P-a.s., on the event that 0 € Cl (V).

Above, Cly (V) is the (unique) infinite cluster of vertices for which
VY (z) < o0.

UNIVERSITE
DE GENEVE

Yvan Velenik Statistical Physics of Stretched Polymers



e . h i
Diffusivity in weak quenched random environment Quzmalizs] dlierdlar

Quenched disorder

Our second result extends results for the directed polymer by
[Imbrie, Spencer '88] and [Bolthausen '89] to our setting:

Assume that d > 4, and 3 and p are small enough. Then, for any
bounded continuous function f on R4,

Plim Y g (nt(7) = z) f(z/VN)

N—oo
erd71

“lwe) g,

= ; T e*%@
© /det(2nY) /Rd—lf( )

Here X is the diffusion matrix of the corresponding annealed
polymer model, and P*(-) = P(- |0 € Cloo(V)).
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Order of the phase transition in the attractive case

Quenched disorder

Heuristic approach to scaling properties of polymers
Some open problems Mixed models

Order of the phase transition in the attractive case

We have seen that, in the attractive case, there is a phase
transition between a collapsed and stretched phase. Some related
questions (still under investigation):

@ Order of the phase transition: apparently always 1st order
when d > 2, but sometimes second order when d = 1 (seems
to depend on ¢ and even on the temperature!).

@ Behaviour at the critical force, when d > 2.

[[oxl [[o]
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Quenched random environment

Diffusivity at very high temperature and d > 4 is OK, but much
remain to be understood. In particular, it would be very desirable
to

e prove diffusivity in the whole weak disorder regime (not only
very high temperatures);
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Quenched random environment

Diffusivity at very high temperature and d > 4 is OK, but much
remain to be understood. In particular, it would be very desirable
to

e prove diffusivity in the whole weak disorder regime (not only
very high temperatures);

@ analyze the strong disorder regime: path localization
(macroscopic atoms, etc.), effective random walk
representation;
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Order of the phase transition in the attractive case

Quenched disorder

Heuristic approach to scaling properties of polymers
Some open problems Mixed models

Quenched random environment

Diffusivity at very high temperature and d > 4 is OK, but much
remain to be understood. In particular, it would be very desirable
to

e prove diffusivity in the whole weak disorder regime (not only
very high temperatures);

@ analyze the strong disorder regime: path localization
(macroscopic atoms, etc.), effective random walk
representation;

e Extend these results to the stretched case (rather than
point-to-plane).
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Order of the phase transition in the attractive case

Quenched disorder

Heuristic approach to scaling properties of polymers
Some open problems Mixed models

Pincus blob picture

In 1976, when studying the scaling properties of stretched polymers
(SAW), Pincus introduced a heuristic “blob picture”, which has
turned out to be very useful in analyzing polymer systems (see de
Gennes' book Scaling Concepts in Polymer Physics).

BLOB
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Quenched disorder

Heuristic approach to scaling properties of polymers
Some open problems Mixed models

Pincus blob picture

In 1976, when studying the scaling properties of stretched polymers
(SAW), Pincus introduced a heuristic “blob picture”, which has
turned out to be very useful in analyzing polymer systems (see de
Gennes' book Scaling Concepts in Polymer Physics).

W ae
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Quenched disorder

Heuristic approach to scaling properties of polymers
Some open problems Mixed models

Pincus blob picture

The main properties assumed by Pincus are
@ Blobs are statistically independent
@ Blobs' size =~ correlation length

@ Blobs scale like critical polymers (SAW)
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Pincus blob picture

The main properties assumed by Pincus are
@ Blobs are statistically independent OKI
@ Blobs' size =~ correlation length

@ Blobs scale like critical polymers (SAW)
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Heuristic approach to scaling properties of polymers
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Models with mixed interactions

A widely used model of polymers is that of a SAW with attractive
interactions between spatially nearest-neighbour bonds.

e
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Models with mixed interactions

A widely used model of polymers is that of a SAW with attractive
interactions between spatially nearest-neighbour bonds.

@ Currently: only SAW with weak attraction.
@ Desirable: systems with competing attraction/repulsion.

@ Main difficulty: decomposition into irreducible pieces.
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Thank you!
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