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The deformed exponential function F'(x,y) = Z x_' y =1/
n!

n=0

e Defined for complex x and y satisfying |y| < 1
e Analytic in C x D, continuous in C x D
e F(-,y) is entire for each y € D

e Valiron (1938): “from a certain viewpoint the simplest entire
function after the exponential function”

Applications:
e Statistical mechanics: Partition function of one-site lattice gas

e Combinatorics: Enumeration of connected graphs,
generating function for Tutte polynomials on K,
(also acyclic digraphs, inversions of trees, ... )

e Functional-differential equation: F'(x) = F(yx) where " = 9/0x

e Complex analysis: Whittaker and Goncharov constants



Application to enumeration of connected graphs
e Let a,,,, = # graphs with n labelled vertices and m edges

e Generating polynomial A, (v) = > ay, v™"

o
e Exponential generating function A(x,v) = > % A, (v)

n=0
e Of course ay ,, = ("(";1)/2) —  A,(v)= (140" D2 —
Z 'CU_ An — (CE, 1+ U)
n
n=0
e Now let ¢, ,, = # connected graphs with n labelled vertices

and m edges

e Generating polynomial Cy,(v) = > ¢y 0™
m

o
e Exponential generating function C'(z,v) = Z 3}_ Cn(v)
=1 n!

e No simple explicit formula for C,(v) is known, but ...

e The exponential formula tells us that C'(x,v) = log A(z, v), i.e.

o0

n'C< v) = log F(z,1+ v)
n=1

[see Tutte (1967) and Scott—A.D.S., arXiv:0803.1477 for generalizations
to the Tutte polynomials of the complete graphs K]

e Usually considered as formal power series

e But series are convergent if |1 +v| <1
[see also Flajolet—Salvy—Schaeffer (2004 )]
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Elementary analytic properties of F'(x,y) = Z — y =1/
n!

n=0

ey=0 F(z,0)=1+x

e 0 < |y| < 1. F(-,y) is a nonpolynomial entire function

of order 0: o
T

i 2k(y)
where > |z (y)| ™ < oo for every av > 0

ey=1 F(x,1)=¢"

e ly| =1 with y # 1: F(-,y) is an entire function of order 1
and type 1:

F(z,y) = exH <1 o )ex/xk;(y) .

i i (y)

where Y |z (y)| ™ < oo for every a > 1

[see also Alander (1914) for y a root of unity; Valiron (1938) and
Eremenko—Ostrovskii (2007) for y not a root of unity]

e |y| > 1: The series F'(-,y) has radius of convergence 0



Consequences for C,(v)

e Make change of variables y = 1 4 v:
Chuly) = Caly — 1)

e Then for |y| < 1 we have

xn

]2

n!
n=1

Culy) = log Fl(z,y) = zk:log@ - :vk(y))

and hence

Culy) = —(n—1)! Zxk(y)_" for all n > 1
k
(also holds for n > 2 when |y| = 1)

e This is a convergent expansion for Un(y)

e In particular, gives large-n asymptotic behavior

Culy) = —(n =10 ao(y) ™" [1 + O(e™)]

whenever F'(-,y) has a unique root zo(y) of minimum modulus

Question: What can we say about the roots zx(y)?



Small-y expansion of roots x(y)

e For small |y|, we have F'(z,y) = 14+ 2 + O(y), so we expect a
convergent expansion

no(y) = =1 = > any"
n=1

(easy proof using Rouché: valid for |y| < 0.441755)
e More generally, for each integer £ > 0, write z = &y~* and
study

5_7: y(n—k)(n—k—l)/Q
n!

WK

F(&y) = y"ERREy™ y) =

i
@)

k + 1; gives root

wily) = —(k+ 1y [1 + f:a,(f)y"]

Sum is dominated by terms n = k£ and n

Rouché argument valid for |y| < 0.207875 uniformly in k:
all roots are simple and given by convergent expansion xy(y)

e Can also use theta function in Rouché (Eremenko)



Might these series converge for all |y| < 17

Two ways that xx(y) could fail to be analytic for |y| < 1:

1. Collision of roots (— branch point)
2. Root escaping to infinity

Theorem (Eremenko): No root can escape to infinity for y in
the open unit disc D (except of course at y = 0).

In fact, for any compact subset K C ID and any € > 0, there exists
an integer ko such that for all y € K ~ {0} we have:

(a) The function F'( -, y) has exactly kg zeros (counting multiplicity)
in the disc |z| < k0|y\_(k0_%), and

(b) In the region |z| > ko\y|_<k0_%>, the function F(-,y) has a
simple zero within a factor 1+ ¢ of —(k+1)y~* for each k > ky,
and no other zeros.

e Proof is based on comparison with a theta function (whose roots
are known by virtue of Jacobi’s product formula)

e Conjecture that roots cannot escape to infinity even in the closed
unit disc except at y =1

Big Conjecture #1. All roots of F'(-,y) are simple for |y| < 1.
land also for |y| = 1, T suspect]

Consequence of Big Conjecture #1. FEach root xy(y) is
analytic in |y| < 1.



But I conjecture more . ..

Big Conjecture #2. The roots of F(-,y) are non-crossing
in modulus for |y| < 1:

[zo(y)] < lz(y)] < lzaly)] < ...
land also for |y| = 1, I suspect]

Consequence of Big Conjecture #2. The roots are actually
separated in modulus by a factor at least |y|, i.e.

[ze(y)| < |yl lzka(y)|  forallk >0
PROOF. Apply the Schwarz lemma to zx(y)/xr1(y).

Consequence for the zeros of C),(y)

Recall

Culy) = —(n=1)1) xy(y)™"

and use a variant of the Beraha-Kahane-Weiss theorem [A.D.S.,
arXiv:cond-mat /0012369, Theorem 3.2] == the limit points of
zeros of C,, are the values y for which the zero of minimum modulus
of F(-,y) is nonunique.

Soif F'(-,y) has a unique zero of minimum modulus for all y € D
(a weakened form of Big Conjecture #2), then the zeros of C,, do
not accumulate anywhere in the open unit disc.

[ actually conjecture more (based on computations up to n & 80):

Big Conjecture #3. For each n, C,,(y) has no zeros with |y| < 1.
land, T suspect, no zeros with |y| = 1 except the point y = 1]



What is the evidence for these conjectures?

Evidence #1: Behavior at real y.

Theorem (Laguerre): For 0 < y < 1, all the roots of F(-,y)
are simple and negative real.

Corollary: Each root x(y) is analytic in a complex neighborhood
of the interval [0, 1).

[Real-variables methods give further information about the roots
z(y) for 0 <y < 1: see Langley (2000).]

Now combine this with

Evidence #2: From numerical computation of the
series x(y) ... [|algorithms to be discussed later]



Let MATHEMATICA run for a weekend . ..

4

11,3 11y 4+ 1_76y5 + 1_76y6

—zo(y) = 1+ 5y + 39" + 5 + 5

493 .7 | 163,8 , 323,9 | 1603, 10 57283 1
T 1Y t oY T WY oY T 352109

170921 12 |, 34017113 . 22565 14
+ 14720 T Som0Y T F5206

+ ... 4 terms through order y%%

1

and all the coefficients (so far) are nonnegative!

e Very recently I have computed z(y) through order y1%3%3,

e [ also have shorter series for zx(y) for & > 1.

Big Conjecture #4. For each k, the series —xi(y) has all
nonnegative coeflicients.

Combine this with the known analyticity for 0 < y < 1, and

Pringsheim gives:

Consequence of Big Conjecture #4. FEach root xi(y) is
analytic in the open unit disc.

NEED TO DO: Extended computations for £ = 1,2, ... and for

symbolic k.
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But more is true ...

Look at the reciprocal of zy(y):

1
_ _ 1,12 1,3 _ 1,4 1,5 7,6
70(y) = 1-3 1Y 12Y 16Y =Y 783
_ 1t 7.8 49,9 _ 113 10 _ 17 11
96Y 7689 69129 930409 16089
293 12 737 13 3107 14
921609 9764309 16588307

— ... — terms through order y%

and all the coefficients (so far) beyond the constant term are nonpositive!
Big Conjecture #h5. For each k, the series —(k + 1)y~ /z1(y)
has all nonpositive coefficients after the constant term 1.
[This implies the preceding conjecture, but is stronger.|
e Relative simplicity of the coefficients of —1/x¢(y) compared to
those of —xg(y) — simpler combinatorial interpretation?
e Note that x(y) — —oo as y T 1 (this is fairly easy to prove).
So 1/xi(y) — 0. Therefore:

Consequence of Big Conjecture #5. For each k, the coefhi-
cients (after the constant term) in the series —(k + 1)y =% /a..(y) are
the probabilities for a positive-integer-valued random variable.

What might such a random variable be???

Could this approach be used to prove Big Conjecture #57

(see also the next two slides)
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But I conjecture that even more is true . ..

Define D, (y) = and recall that —zo(y) = lim D, (y) /"

(—1)”_1(n — 1)' n—00

Big Conjecture #6. For each n,
(a) the series D, (y)~"/" has all nonnegative coefficients,
and even more strongly,

(b) the series D, (y)"/" has all nonpositive coefficients after the
constant term 1.

Since D,(y) > 0 for 0 < y < 1, Pringsheim shows that
Big Conjecture #6a implies Big Conjecture #3:

For each n, C,,(y) has no zeros with |y| < 1.

Moreover, Big Conjecture #6b = for each n, the coefficients in the
series 1 — Dn(y)l/ " are the probabilities for a positive-integer-valued
random variable.

Such a random variable would generalize the one for —1/z¢(y) in
roughly the same way that the binomial generalizes the Poisson.

12



What might such a random variable be?

e Probability generating function P,(y) =1 — D, (y)"/"

(=1)»Yn —1)!

e Presumably has something to do with random graphs on n vertices

where D, (y) =

e Maybe some structure built on top of a random graph
(some kind of tree? Markov chain?)

Try to understand the first two cases:
Pyy) = 1—(1—y)'?
1 1,2 1,3 5,4 7.5 21 6
= Y T Y T 1Y +ﬁsy +ﬁy +my

429 715 2431
taoY T 32768y + 65536y + 2621449 Y+

~ Sibuya(3) random variable

Py(y) = 1—(1—3y+3°)"?
= 3 + zllyQ T 24y + 3y’ + 4%95 + ;@y(s

329 553
+5763/ + 23043/ + 414729 + 829443/ Dt

How are these related to random graphs on 2 or 3 vertices?

[ have an analytic proof that Ps(y) = 0, but it doesn’t shed any light
on the possible probabilistic interpretation.

Jim Fill has a probabilistic interpretation for n = 2,3 in terms of
birth-and-death chains, but it doesn’t seem to generalize to n > 4.

13



Ratios of roots x(y)/xr11(y)

The series

oY)
r1(y)

has nonnegative coefficients at least up to order y'3°

= 2y + 6y + 72y + 216y + 1296y + -

(But its reciprocal does not have any fixed signs.)

Big Conjecture #7. The series z¢(y)/x1(y) has all nonnegative
coefficients.

Consequence of Big Conjecture #7. Since hm zo(y)/x1(y) =
y11

Big Conjecture #7 implies that |zo(y)| < |z1(y)| for all y € D
(a special case of Big Conjecture #2 on the separation in modulus
of roots).

e But unfortunately ... the series

xl(y) 9 1 2 17 .3 23 4 343
ooly) Y+ WYt oY T ogeY T 17280y + -

has a negative coefficient at order y'3. This doesn’t contradict
the conjecture that |z1(y)/x2(y)| < 1 in the unit disc, but it
does rule out the simplest method of proof.

NEED TO DO: Use Schur algorithm to test |z1(y)/x2(y)| < 1 to
higher order. Then extend to xi(y)/xr1(y).

14



Asymptotics of roots as y — 1

Write y = e™7 with Rey > 0.
Want to study v — 0 (non-tangentially in the right half-plane).

[ believe I will be able to prove that

1
—zi(e7) ~ 57_1 + cm_l/?’ + ...

for suitable constants ¢y < ¢ < ¢ < ... . But I have not yet
worked out all the details.

Overview of method:

1. Develop an asymptotic expansion for F'(x,e™) when v — 0 and
x is taken to be of order 7!, because this is the regime where
the zeros will be found.

2. Use this expansion for F(x,e™7) to deduce an expansion for
xp(e™).

Sketch of step #1: Insert Gaussian integral representation for
e~3"" to obtain

with

15



Saddle-point equation ¢'(t) = 0 is —ite™" = ~ve?/?x, so it makes

sense to make the change of variables
r = v e we"

which puts the saddle point at ¢y = 7w. (Note that this brings in
the Lambert W function, i.e. the inverse function to w +— we®.) We
then have
7 2
t v
F(yte 7 Pwe”, e = (217y) Y2 / dt exp [—2— + ﬁe”]
& &

—00

Now shift the contour to go through the saddle point (parallel to the
real axis) and make the change of variables t = s + iw: we have

2

F(y e Pwe”, e™) = (2my) 2 exp [;U—Jrgl /ds explh(s)]
T

—00
where

1 : 2
h(s) = _| +w)32 + E<e”—1—i3+8—)
27y v 2

and the integration goes along the real s axis.

These formulae should allow computation of asymptotics
(a) ¥ — 0 (in a suitable way) for (suitable values of) fixed w; and
(b) w — oo (in a suitable direction) for (suitable values of) fixed 7.

Focus for now on (a).

16



Recall that

1 . 2
h(s) = — ( +w)32 + E<e” —1 —i3+8—)
2y v 2
Consider for simplicity v and x real. There seem to be three regimes:

e “High temperature”: w > —1 (i.e. we" > —1/e).
Easiest case: s = 0 saddle point is Gaussian, and can compute
the asymptotics to all orders in terms of 3-associated Stirling

subset numbers {;‘1}>3. [Still need to justify this formal calcula-
tion by showing that only the s = 0 saddle point contributes.]

e “Low temperature”: w = —ncotn+ni with —7 <n <=
(i.e. we®” < —1/e).

Saddle points at s = 0 and s = 2n contribute; I think this is all.

e “Critical regime”: w = —(1 + &y'/?) with ¢ fixed, which
corresponds to

P P

= 5 y
— At the “critical point” & = 0: Dominant behavior at s = 0
saddle point is no longer Gaussian (it vanishes) but rather
the cubic term 7s%/(67y). Can compute the asymptotics to
all orders in terms of 4-associated Stirling subset numbers

{:%}2 , (at least formally).

— In the critical regime (£ arbitrary): Expect to have Airy
asymptotics as in Flajolet—Salvy—Schaeffer (2004). This is
where the roots will lie.

I would appreciate help with the details!!!

17



N
N
The polynomials Py(z,w) = E ( )x”w”(N”)
n
n=0

e Partition function of Ising model on complete graph Ky,

with z = 2" and w = e 2/

e Related to binomial (14 2)" in same way as our F'(z, )
is related to exponential e*
[but we have written w™N=") instead of y""~1)/?]

cwl=N ,
o]\}gnooPN< 7 ,w) = F(z,w *) when |w| > 1

e So results about zeros of Py generalize those about F
(just as results about the binomial generalize those about the
exponential function)

e Lee—Yang theorem: In ferromagnetic case (0 < w < 1), all zeros
are on the unit circle |z| = 1

e Laguerre: In antiferromagnetic case (w > 1), all zeros are real
and negative

e What about “complex antiferromagnetic” case |w| > 177

Big Conjecture #8. For |w| > 1, all zeros of Py(-,w) are
separated in modulus (by at least a factor |w|?).

Taking N — oo, this implies Big Conjecture #2 about the separation
in modulus of the zeros of F(-,y).

18



N
N
Differential-equation approach to Py (z,w) = Z ( )x”w”(N ")
n=0

N
On the space of polynomials Qy(x) = > a,z" of degree N with ag # 0,
define the semigroup n=0

(AtQN Zanxn tn(N—n)

Roots of A;Q) y evolve according to an autonomous differential equation,
which is best expressed in terms of logarithms of roots (; = log x;:

dCZ Z f

J7i

where

f(z) = coth(z/2)

These are first-order (“Aristotelian”) equations of motion for a system
of n “particles” (in R or C) with a translation-invariant “force” f.

Moreover, the specific force f = coth is a Calogero-Moser—Sutherland

system, much studied in the theory of integrable systems.

For polynomials () with real roots and real t > 0, this approach
gives interesting results on separation of zeros. (In particular, it gives
a new proof of Laguerre’s theorem.)

Is this approach useful for complex t with Ret > 0777
Can it be used to prove Big Conjecture #87

19



A more general approach to the leading root z((y)
(When stumped, generalize .. .!)

Consider a formal power series

00
_ Z o, " yn(n—l)/Q
n=0

normalized to oy = a1 = 1, or more generally

= Z an(y)

= a1(0) =
(b) an(O) = ( for n > 2 and
Ofy"

") with lim v, = oo.
n—0o0

—~
@)
~
S

3
—~
<
~—

| |

Examples:

e The “partial theta function”

Op(x,y) = > a"y" VP
n=0
e The “deformed exponential function”

(0. 9] n

2y n{n—
Flay) = ) —y" 2
n=0
e More generally, consider
o0 o yn(n—l)/Q

}Nzxayaq =
( ) ;(1+Q)(1+q+q2)---(1+q+...+q”_1)
which reduces to ©y when ¢ = 0, and to F' when g = 1.

e “Deformed binomial” and “deformed hypergeometric” series (see below).

20



A more general approach, continued . ..

e A power series for the leading root xy(y) can be computed from
the power-series expansion of log f(z,y). This is extremely effi-
cient! (see next lecture)

e Eixample: For ©y we have

—zoly) = 14y+2y°+49°+9y* +219y°+52y5+133y +-351y°+. . .

with strictly positive coefficients at least through order %%

~

e More generally, for R(z,y, ¢) it can be proven that

_ — . Pn<Q) n
xo(y,q) = 1+ ;Qn@y
where .
Qula) = TJ(1+q+...+q 1G]
fe=2

and P, (q) is a self-inversive polynomial with integer coefficients.

[ have verified for n < 349 that P, (q) has two interesting positivity
properties:

(a) P,(q) has all nonnegative coefficients. Indeed, all the
coefficients are strictly positive except [q'] P5(q) = 0.

(b) P.(q) > 0 for ¢ > —1.

Can any of this be proven???
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YES!U .. A first teeny breakthrough . ..

... but please stay tuned for our next installment . ..
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A general approach to the leading root z¢(y)

e Start from a formal power series

flzy) = ) an(y) 2"

(¢) an(y) = O(y") with lim v, = oo

n—oo

and coefficients lie in a commutative ring-with-identity-element R.

e By (c), each power of y is multiplied by only finitely many
powers of x.

e That is, f is a formal power series in y whose coefficients are
polynomials in x, i.e. f € Rlz|[ly]].

e Hence, for any formal power series X (y) with coefficients in R
[not necessarily with zero constant term|, the composition f(X(y), y)
makes sense as a formal power series in y.

e Not hard to see (by the implicit function theorem for formal
power series or by a direct inductive argument) that there exists a
unique formal power series zo(y) € R||y|] satisfying f(zo(y),y) = 0.

e We call z((y) the leading root of f.

e Since x((y) has constant term —1, we will write z¢(y) = —&(y)
where §(y) =1+ O(y).

23



How to compute &y(y)?

1. Elementary method: Insert & (y) =1+ Y b,y" into
n=1
f(—=&o(y),y) = 0 and solve term-by-term.

2. Method based on the explicit implicit function formula (see below).

3. Method based on the exponential formula and expansion of log f(x, y)
(see again below).

e Method #3 is computationally very efficient. (It’s what I used above.)

e Method #2 gives an explicit formula for the coefficients of &y(y) . ..

e Can it also be used to give proofs?

24



Tools I: The explicit implicit function formula

e See A.D.S., arXiv:0902.0069 or Stanley, vol. 2, Exercise 5.59
e (Almost trivial) generalization of Lagrange inversion formula
e Comes in analytic-function and formal-power-series versions

e Recall Lagrange inversion: If f(z) = > 7, a,x™ with a; # 0

n=1
(as either analytic function or formal power series), then

i) = Wi Zie(7)

where [("]g(() denotes the coefficient of (" in the power series g(().
More generally, if h(x) = > b,x”, we have

M) = h(0) + S0 R (%)

m=1

e Rewrite this in terms of g(x) = x/ f(x): then f(x) = y becomes
x = g(x)y, and its solution x = (y) = f(y) is given by the
power series

oly) = 3L ()"

and

how)) = h0) + 3 L (Qa(c)

25



The explicit implicit function formula, continued

e Generalize z = g(x)y to x = G(x,y), where
— G(0,0) =0and |(0G/0x)(0,0)| < 1 (analytic-function version)
— G(0,0) = 0and (0G/0x)(0,0) = 0 (formal-power-series version)

e Then there is a unique ¢(y) with zero constant term satisfying
p(y) = Gle(y), y), and it is given by

oly) = 3 ["NGEC )"

m=1

we have

——

More generally, for any H(x,y

OH(C,y)

=

]2

H(p(y),y) = H(0,y) + G(¢,y)"

1
m
1

3
Il

e Proof imitates standard proof of the Lagrange inversion formula:
the variables y simply “go for the ride”.

e Alternate interpretation: Solving fixed-point problem for the
family of maps x — G(x,y) parametrized by y. Variables y
again “go for the ride”.

26



Application to leading root of f(x,y)

e Start from a formal power series f(x,y) = >~ a,(y) " satisfying
properties (a)—(c) above.

o Write out f(—&p(y),y) = 0 and add &(y ) to both sides:

fly) = anly) — larly) — Vély +zan

o Insert £y(y) = 1+(y) where (y) has zero constant term. Then
p(y) = Gle(y), y) where

Glzy) = > (=D au(y) (1 +2)"

n=0
and

. ap(y) —1 forn=0,1

an(y) =
an(y) for n > 2

And ¢(y) is the unique formal power series with zero constant
term satisfying this fixed-point equation.

e Since this G satisfies G(0,0) = 0 and (0G/0z)(0,0) = 0 [indeed
it satisfies the stronger condition G(z,0) = 0], we can apply the
explicit implicit function formula to obtain an explicit formula

for &(y):

D (Z(—n’“ (1) (140" )

m=1 n=0
More generally, for any formal power series H(z,y), we have
H(&(y) —1,9)
(9H C,y = o
H(0,3) +Z %(Z(—n <><1+<>>
n=0
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Application to leading root of f(x,y), continued

e In particular, by taking H(z,y) = (1 + z)” we can obtain an
explicit formula for an arbitrary power of &y(y):

e Important special case: ag(y) = ai(y) = 1 and a,(y) = o, y™
(n > 2) where A, > 1 and lim A, = oo. Then

60 ﬁ—l - 1 S 5—1+Zni =
gL T (P
I

e Can this formula be used for proofs of nonnegativity???
e Empirically I know that the RHS is > 0 when A, = n(n—1)/2:

— For § > —2 with «,, = 1 (partial theta function)
— For 8 > —1 with a, = 1/n! (deformed exponential function)
— For g > —1 with o, = (1 — ¢)"/(q; q¢)n, and ¢ > —1

e And I can prove this (by a different method!) for the partial
theta function (but not yet for the others).

e How can we see these facts from this formula???
lopen combinatorial problem]
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Tools II: Variants of the exponential formula

e Let R be a commutative ring containing the rationals.

o Let A(z) = > " a, 2" be a formal power series (with coeffi-
cients in R) satisfying ag = 1.

e Now consider C(z) =log A(z) = > 7 ¢, x™.
e [t is well known (and easy to prove) that
— k
n — n— f > 1
a Z ~ Ch Gt orn >

k=1
This allows {a,} to be calculated given {c,}, or vice versa.

e Sometimes useful to introduce én = nc,, which are the coeffi-
cients in the logarithmic derivative

:UA’ ZC’:E

e See Scott-Sokal, arXiv:0803.1477 for generalizations to A(z)*
and applications to the multivariate Tutte polynomial

e Now specialize to R = Ry[[y]] and A(z,y) = >~ an(y) 2"
where ag(y) =1

e Assume further that a;,(0) =1 and a,(0) =0 for n > 2
[conditions (a) and (b) for our f(z,y)]

e Then
:z:A’ (x y Z
Chl(

where ' denotes 0/0x and C’n(y) has constant term (—1)""1,
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Application to leading root of f(x,y)

©¢)

e Start from a formal power series f(x,y) =1+ 2z + > a,(y)x

n=2

n

satisfying
an(y) = O =Dy forn > 2

for some real o > 0. [This is a bit stronger than (a)—(c).]
e Define {C,(y)}>2, by

Pfe) g
T 200

where " denotes 0/0x.

e Theorem: We have

~

Coly) = (=1)""&(y)™" + Oy™)

or equivalently
&ly) = (1" "Caly) ™" + O(y™)

e This theorem provides an extraordinarily efficient method for
computing the series &y(y):

— Compute the C,(y) inductively using the recursion

~

n—1 _
Cn = na, — >, Cran_j
k=1
— Take the power —1/n to extract &y(y) through order y(o”ﬂ_l

e This abstracts the recursive method first used for the special case
X n

L n{n—
Flr) = 3 Sy,

n=0
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Proof of Theorem (via complex analysis)

e Use complex-analysis argument to prove Theorem when R = C
and f is a polynomial.

e Infer general validity by some abstract nonsense.

Lemma. Fix a real number o > 0, and let P(z,y) = 1 + x +
SV an(y)z” where the {a,(y)}Y_, are polynomials with complex
coefficients satisfying a,(y) = O(y*"~Y). Then there exist numbers
p > 0and v > 0 such that P(-,y) has precisely one root in the disc
x| < v|y|~* whenever |y| < p.

Idea of proof of Lemma: Apply Rouché’s theorem to f(x) = x
and g(z) = 14+ S22 a,(y)z" on the circle |z| = ~|y| .

Proof of Theorem when R = C and f is a polynomial:

Write
k(y) .
Py = [10-+)
it Xi(y)
with k(y) < N. Therefore
x Pz, y) _ %‘y:) —z/Xi(y)
P(z,y) — 1 — z/Xi(y)
and hence o)
y

Now, for small enough |y|, one of the roots is given by the convergent
series —&y(y) and is smaller than ~v|y|™® in magnitude, while the
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other roots have magnitude > ~|y|™ by the Lemma. We therefore
have

Caly) = (=1)""&(y) ™" < (N = 1)y "[y|™

for small enough |y|, as claimed. [J

Proof of Theorem in general case: Write

(0.9]

an(y) — Z Anm ym

m=la(n-1)]

Work in the ring R = Z[a] where @ = {aun}n>2 m>[a(n-1)] are
treated as indeterminates. Then the claim of the Theorem amounts
to a series of identities between polynomials in @ with integer coefhi-
cients. We have verified these identities when evaluated on collections
a of complex numbers of which only finitely many are nonzero; and
this is enough to prove them as identities in Z[a]. [

There is also a direct formal-power-series proof (due to Ira Gessel)
at least in the case a = 1. I don’t know whether it extends to
arbitrary real a > 0.

More recently, Jim Fill and I have discovered an even simpler
formal-power-series proof, based on Waring’s (1762) formula for the
power-sum symmetric functions in terms of the elementary symmet-
ric functions.

General philosophy. Some positivity properties (proven or
conjectured) for & (y) may actually hold for [(—1)"~1C,(y)] /" for
each finite n.
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Computational use of Theorem

e Can compute &)(y) through order y¥=! by computing C ~N(Y)

e Do this by computing én(y) for 1 <n < N using recursion

e Observe that all C,(y) can be truncated to order yV—1

[no need to keep the full polynomial of degree n(n —1)/2]

e For I, have done N = 900
[N = 400 takes a minute, N = 900 takes less than 6 hours;
but N = 900 needs 24 GB memory!]

e For Oy, have done N = 7000
[NV = 500 takes a minute, N = 1500 takes less than an hour;
N = 7000 took 11 days and 21 GB memory]

~

e For R, have done N = 350
[N = 50 takes a minute, N = 100 takes less than an hour;
N = 350 took a month and 10 GB memory]
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Some positivity properties of formal power series

e Consider formal power series with real coefficients
fly) =1+ iamym
m=1
e For a € R, define the class S, to consist of those f for which
f(y);: -1 i () "
m=1

has all nonnegative coefficients (with a suitable limit when ac = 0).
e In other words:

— For a > 0 (resp. a = 0), the class S, consists of those f for
which f¢ (resp. log f) has all nonnegative coefficients.

— For a < 0, the class S, consists of those f for which f* has
all nonpositive coefficients after the constant term 1.

e Containment relations among the classes S, are given by the
following fairly easy result:

Proposition (Scott—A.D.S., unpublished):
Let o, 8 € R. Then &, C Sg if and only if either

(a) « < 0and B > a, or
(b) @ > 0 and § € {a, 2v, 3, . . . }.

Moreover, the containment is strict whenever o # 3.
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Application to deformed exponential function F’

As shown earlier, it seems that &y(y) € Sy

9 3 4, 7.5 7 6
Sy) = 1+ 5y + 39" + 5y’ + 5y + 350 + 15v

493 7 . 163.8 |, 3239 . 1603 10 |, 57283 11

1Y T osstY T Yt o3sw0Y T 1352409

170921 .12, 340171 13 , 22565 14
+ 1420 + Somo¥ T 552069

+ ... + terms through order y®%

and indeed that &(y) € S_1:

-1 2 3 4 5) 7 .6
W) =1 =3y — W — Y — 1Y — 1Y — gV

1.7 7.8 49 .9 113 10 17 11
96Y 763Y 69129 230409 1608 Y
203 12 737 13 3107 , 14
921607 976430 Y 1658330 Y

899

— ... — terms through order y

But I have no proof of either of these conjectures!!!
e Note that &(y) is analytic on 0 < y < 1 and diverges as y T 1

like 1/[e(1 — y)].
e It follows that &y(y) ¢ S, for a < —1.
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Application to partial theta function O

It seems that &(y) € Sy

Eo(y) = 14+y+2y° +49° + 9y* + 219° + 525 + 133y" + 3513°
+948y” +2610y" + ... + terms through order 5%

and indeed that &(y) € S_1:

Soly) ' = 1—-y—y =y’ —2y" — 4y’ — 10y° — 25y" — 66y°
—178y” — 490y'Y — ... — terms through order y5%

and indeed that &y(y) € S_o:

Gy = 1-2y—y" —y' =2 =Ty’ —18y" —50y°
—138y” — 386y'Y — ... — terms through order y5%

Here I do have a proof of these properties (see below).

e Note that

Soly)* — 1 — oyt a—;g;f n (04+2>6(04+7)y3 + 0@

e So & (y) & S, for a < —2.
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" yn(n—l)/Z

0
Application to R (x,9,q Z

—~(1+q) - (1+qg+...+¢""

e Can use explicit implicit function formula to prove that

Solyiq) = 14+ ) SZ% y"

where
xO

k
Qulg) = [0 +q+.. .+ /)
k=2
and P,(q) is a self-inversive polynomial in ¢ with integer coefficients.

o Empirically P,(q) has two interesting positivity properties:

(a) P,(q) has all nonnegative coefficients. Indeed, all the
coefficients are strictly positive except [q'] P5(q) = 0.

(b) P.(q) > 0 for ¢ > —1.
o Empirically & (y; q) € S_1 for all ¢ > —1:

10
= LU

-10 -0.5 0.0 0.5

e Can any of this be proven for ¢ # 07
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The deformed binomial series

Here is an even simpler family that interpolates between the
partial theta function ©y and the deformed exponential function F":

e Start from the Taylor series for the binomial f(z) = (1— pax)~"/*

it is convenient to parametrize it in this way]

n—1)/2

and introduce factors y™ as usual:

Fu(z,y) = i(—u)” (_1/”> "y n=1)/2

n
n=0

o0 n—1
1
= n!
o We call F),(z,y) the deformed binomial function.
e For 1 = 0 it reduces to the deformed exponential function.

e For ;s = 1 it reduces to the partial theta function.

e For y=—1/N (N =1,2,3,...) it is a polynomial of degree N
that is the “y-deformation” of the binomial (1 + z/N)*
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The deformed binomial series, continued

e Can use explicit implicit function formula to prove that

00 P,
Solyip) = 1+ ) d(u) y"
n=1 n

where P,(u) is a polynomial of degree n with integer coefficients
and d,, are explicit integers.

o Empirically P,(u) has two interesting positivity properties:

(a) P,(u) has all strictly positive coefficients.
(b) P,() > 0 for p > —1.

o Empirically & (y; n) € S—q for all p > —1:

05 10 15 20

e Can any of this be proven for p # 17
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The deformed hypergeometric series

e Exponential (¢Fy) and binomial (1F}) are simplest cases of the

hypergeometric series 7.
e Can apply “y-deformation” process to Hfy:

wf H15 -5 Hp _ - (1; 1) - - (15%)%5’3_ n(n—1)/2
qu(Vl,...,Vq :U,y) nz:;(l;yl)ﬁ---(l;yq)ﬁ nl
where
n—1

e Note that setting u, = 0 reduces JF" to , 1Fy (and likewise for v).

o Empirically the two positivity properties for the deformed binomial
appear to extend to o (in the two variables py, p2).

e [ expect that this will generalize to all JF'.

e But the cases F" with ¢ > 1 are different, and I do not yet know

the complete pattern of behavior.
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Identities for the partial theta function

e Use standard notation for g-shifted factorials:

n—1

(a;q)n = [J(1— ag’)

(g0 = [0 —ag) forlg <1

e A pair of identities for the partial theta function:

(0. 9]

Zéﬁ” MR = (i y)o (=21 Y)oc —

n=0
00 o0 ( ZC)n yn2
E : n, n(n—1)/2 . E -
X = (—TY)x
n—0 ( ) n—0 (y7 y)n (—ZU, y)n

as formal power series and as analytic functions on (x,y) € C x D

e Rewrite these as

Zfb’” MU = () s (—2Y )

o 00 n o n2
n,nn-1)/2 _ (—ZC) Y ]

> o'y = (—2yye |1 +2+ ) —

n=>0 n—1 (y7y)n (_xyvy)n—l

e The first identity goes back to Heine (1847).

e The second identity can be found in Andrews and Warnaar
(2007) but is probably much older.
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Proof that &, € &; for the partial theta function

e Let’s say we use the first identity:

O0(2,y) = (Wi Y)oo (7Y Yoo |1+ T+ Y  — :

e So O(z,y) = 0 is equivalent to “brackets = 0.
e Insert x = —&y(y) and bring &y(y) to the LHS:

fly) = 1+ — v
n=1 131(1 — ) 131[1 — y7&(y)]

e This formula can be used iteratively to determine &y(y),
and in particular to prove the strict positivity of its coefficients:

e Decfine the map F: Zlly]| — Z[[y]] by

FOy) =1+ v

n n—1

[T —=w) [1[1 =€)l

j=1 j=1

e Define a sequence féo), fél), ... € Z[lyl]] by 580) =1 and fékﬂ) = fgék)-

e Then 5(()0) < fél) <...=& and fék)(y) = &(y) + O@yPF ).

e In particular, klim gé“(y) = &o(y), and &(y) has strictly positive

coefficients.

e Thomas Prellberg (arXiv:1210.0095) has a combinatorial inter-
pretation of &y(y) and fék)(y).

e Proofsof §y € S§_1and &y € S_5 use second identity in a similar way:.
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A conjectured big picture

I conjecture that there are three different things going on here:

e Positivity properties for the leading root &y(y):

— &o(y) in various classes Sp for a fairly large class of series
f(ZU, y> — Z a, " yn(n—l)/2
n=0
— Appears to include deformed hypergeometric pFg,
Rogers—Ramanujan R(z,y, q), probably others

— Find sufficient conditions on {a;, }7° 477

e Positivity properties for the higher roots & (y):
— Some positivity for partial theta function and perhaps others
(needs further investigation)

— Positivity of all &(y) only for deformed exponential??

e Positivity properties for ratios &x(y)/&k11(y):

— Holds for some unknown class of series f(x,y)

— Even for polynomials, class is unknown (cf. Calogero-Moser):
roots should be “not too unevenly spaced”

— Class appears to include at least deformed exponential

— Needs much further investigation
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Summary of open questions

e All the Big Conjectures concerning F(x,y) = Z x—' =12
n!

n=0

e For a formal power series

flz,y) = D apa"y"" 2
n=>0

with oy = a3 = 1, find simple sufficient conditions to have
£o(y) = 0 or more generally &)(y) € Sg.

e In particular, want to handle v, = 1/n!or o, = (1—¢)"/(q; @)n
or apy, = (—p)" (_2/ #) or hypergeometric generalizations.

e Can this be done using explicit implicit function formula?
(open combinatorial problem)

e Understand positivity properties for higher roots xp(y) and
ratios of roots xp(y)/xrr1(y).

e Understand the first-order Calogero-Moser—Sutherland system
dg
il > fG-¢)
J#i
with f(z) = 1/z [roots of polynomial solution of 1D heat equation]
or f(z) = coth z, especially at complex time ¢.
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