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1.1 The Homogeneous Pinning Model

0 = τ0 τ1 τ2 τ3 τ4 τ5 τ6

Let τ := {τ0 = 0 < τ1 < τ2 · · · } ⊂ N0 be a recurrent renewal process,
with law P, and

P(τ1 = n) ∼ C

n1+α
for some exponent α > 0.

The Pinning Model is defined by the family of Gibbs measures:

PN,h(τ) =
1

ZN,h
eh

∑N
n=1 1{n∈τ}P(τ) (expectation EN,h[·]),

where N is the system size, h ∈ R determines the interaction

strength, and ZN,h = E[eh
∑N
n=1 1{n∈τ} ] is the partition function.
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1.2 Phase Transition for the Pinning Model

As h varies, the pinning model undergoes a localization-delocalization
transition. More precisely, there is a critical hc (= 0) such that

For h < hc, the limiting contact fraction

g(h) := lim
N→∞

EN,h

[ 1

N

N∑
n=1

1{n∈τ}
]
= 0;

For h > hc, the limiting contact fraction g(h)> 0.

Furthermore, g(h) = F ′(h), where the free energy

F (h) = lim
N→∞

1

N
logZN,h

{
= 0 if h ≤ hc,
≈ C(h− hc)γ as h ↓ hc.

The exponent, γ = 1
min{1,α} , is known as a critical exponent.
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1.3 The Disordered Pinning Model

We now add disorder.

Let ω := (ωn)n∈N be i.i.d. with E[ω1] = 0 and E[eλω1 ] <∞ for all λ
close to 0.

Given disorder ω, the Disordered Pinning Model is defined by the
family of Gibbs measures:

PωN,β,h(τ) =
1

ZωN,β,h
e
∑N
n=1(βωn+h)1{n∈τ}P(τ),

where β ≥ 0 determines the disorder strength, h ∈ R determines the
bias, and ZωN,β,h is the disordered partition function.
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1.4 Phase Transition for the Disordered Pinning Model

For each β > 0, as h varies, the disordered pinning model also
undergoes a localization-delocalization transition.

There exists ĥc(β) < 0, s.t. for P-a.e. ω, the contact fraction

ĝ(β, h) := lim
N→∞

EEωN,β,h
[ 1

N

N∑
n=1

1{n∈τ}
]{= 0 if h < ĥc(β),

> 0 if h > ĥc(β).

Furthermore, ĝ(β, h) = ∂F̂
∂h (β, h), where the disordered free energy

F̂ (β, h) = lim
N→∞

1

N
E[logZωN,β,h]

 = 0 if h ≤ ĥc(β),

Conj.
≈ C(h− ĥc(β))γ̂(β) as h ↓ ĥc(β)

for some critical exponent γ̂(β).
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Furthermore, ĝ(β, h) = ∂F̂
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1.5 Disorder Relevance/Irrelevance

Basic Question: Does disorder modify the qualitative nature of the
homogeneous model (without disorder)?

For the pinning model, we say that disorder is

relevant if the critical exponents γ̂(β) 6= γ for all β > 0 (no
matter how weak is the disorder strength);

irrelevant if γ̂(β) = γ for β > 0 sufficiently small.

For the pinning model with renewal exponent α, it has been shown:

Disorder is relevant for α > 1
2 ;

Disorder is irrelevant for α < 1
2 ;

Disorder is marginally relevant for α = 1
2 .

Alexander, Zygouras; Derrida, Giacomin, Lacoin, Toninelli; Cheliotis,
den Hollander, Opoku, ...



1.5 Disorder Relevance/Irrelevance

Basic Question: Does disorder modify the qualitative nature of the
homogeneous model (without disorder)?

For the pinning model, we say that disorder is

relevant if the critical exponents γ̂(β) 6= γ for all β > 0 (no
matter how weak is the disorder strength);

irrelevant if γ̂(β) = γ for β > 0 sufficiently small.

For the pinning model with renewal exponent α, it has been shown:

Disorder is relevant for α > 1
2 ;

Disorder is irrelevant for α < 1
2 ;

Disorder is marginally relevant for α = 1
2 .

Alexander, Zygouras; Derrida, Giacomin, Lacoin, Toninelli; Cheliotis,
den Hollander, Opoku, ...



1.5 Disorder Relevance/Irrelevance

Basic Question: Does disorder modify the qualitative nature of the
homogeneous model (without disorder)?

For the pinning model, we say that disorder is

relevant if the critical exponents γ̂(β) 6= γ for all β > 0 (no
matter how weak is the disorder strength);

irrelevant if γ̂(β) = γ for β > 0 sufficiently small.

For the pinning model with renewal exponent α, it has been shown:

Disorder is relevant for α > 1
2 ;

Disorder is irrelevant for α < 1
2 ;

Disorder is marginally relevant for α = 1
2 .

Alexander, Zygouras; Derrida, Giacomin, Lacoin, Toninelli; Cheliotis,
den Hollander, Opoku, ...



2.1 Directed Polymer Model

Let X := (Xn)n∈N0
be a mean-zero random walk on Zd with law P.

Let ω := (ω(n, x))n∈N0,x∈Zd be i.i.d. with E[ω(0, o)] = 0, and

E[eλω(0,o)] <∞ for all λ close to 0.

Given disorder ω, the Directed Polymer Model on Zd+1 is defined by
the family of Gibbs measures

PωN,β(X) =
1

ZωN,β
eβ

∑N
n=1 ω(n,Xn)P(X),

where β ≥ 0 is the disorder strength, ZωN,β is the partition function.
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2.2 Phase Transition for the Directed Polymer Model

There exists a critical βc = βc(d) ≥ 0, such that if X is a diffusive
random walk on Zd, then

For β < βc(d), X is diffusive under PωN,β (sane as under P);

For β > βc(d), X is super-diffusive under PωN,β (in contrast to P).

Assuming X to be diffusive, it has been shown that:

βc(d) = 0 for d = 1 and 2, and hence disorder is relevant;

βc(d) > 0 for d ≥ 3, and hence disorder is irrelevant.

Assuming that d = 1 and X is in the domain of attraction of an
α-stable process for some α ∈ (0, 2], then similarly:

Disorder is relevant for α ∈ (1, 2] and irrelevant for α ∈ (0, 1).
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3.1 The Ising Model

The Ising model on a domain Ω ⊂ Zd with + boundary condition, at
inverse temperature β ≥ 0 and external field h ∈ R, is given by the
following Gibbs measure on spin configurations (σx)x∈Ω ∈ {±1}Ω:

P+
Ω,β,h(σ) =

1

Z+
Ω,β,h

exp
{
β

∑
x∼y∈Ω∪∂Ω

σxσy + h
∑
x∈Ω

σx

}
P(σ)

where P is the uniform distribution on {±1}Ω, and Z+
Ω,β,h is the

partition function. The free energy is defined by

F (β, h) = lim
Ω↑Zd

1

|Ω|
logZ+

Ω,β,h.
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3.2 Phase Transition for the Ising Model

Assuming h = 0, the Ising model undergoes a phase transition as β
varies. There exists a critical βc(d) ≥ 0, such that the magnetization

m(β, h = 0) := lim
Ω↑Zd

E+
Ω,β,0

[ 1

|Ω|
∑
x∈Ω

σx

]{= 0 if β ≤ βc,
> 0 if β > βc

=
∂F

∂h
(β, 0).

For d = 2, βc = 1
2 log(1 +

√
2), and as we vary the external field h at

β = βc, Camia-Garban-Newman’12 recently showed that

m(βc, h) = Θ(h
1
15 ) as h ↓ 0.
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3.3 The Two-Dimensional Random Field Ising Model

We now add disorder to the Ising model on Z2 at β = βc in the form
of a random external field.

Let ω := (ωx)x∈Z2 be i.i.d. with E[ωx] = 0 and E[eλωx ] <∞ for all λ
close to 0.

Given ω, disorder strength λ ≥ 0 and external field h ∈ R, we define
the Random Field version of the critical Ising model on Ω ⊂ Z2 by

PωΩ,λ,h(σ) =
1

ZωΩ,λ,h
exp

{∑
x∈Ω

(λωx + h)σx

}
P+

Ω,βc,0
(σ),

where ZωΩ,λ,h is the partition function.

Question: Is disorder relevant in the sense that for arbitrary small
disorder strength λ > 0, the magnetization

m̂(λ, h) := lim
Ω↑Z2

EEωΩ,λ,h
[ 1

|Ω|
∑
x∈Ω

σx

]
≈ Chγ as h ↓ 0

for some critical exponent γ 6= 1
15? (Belief: γ > 1

15 .)
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4.1 Disorder Relevance via Scaling Limits (Heuristics)
We propose a new perspective on disorder relevance/irrelevance,
which gives a unified treatment for many disordered systems.

Observation: Disorder relevance means: fixed disorder strength,
however weak, is still too strong since it changes the qualitative
features of the homogeneous model in the ∞-volume limit.

To moderate the effect of disorder, it should be possible to tune the
strength of disorder down to zero as the system size tends to infinity
(while rescaling space), so that disorder persists in such a continuum
and weak disorder limit.

Thus disorder relevance manifests itself in the existence of a non
trivial continuum disordered model in a suitable weak disorder and
continuum limit. (Consistent with Harris’ Criterion’74).

Inspired by Alberts-Khanin-Quastel’12 construction of the Continuum
Directed Polymer Model in dimension 1 + 1, we cast things in the
general framework of disorder relevance-irrelevance, give general
criteria for convergence to continuum disordered models, and apply
them to new models of interest.
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trivial continuum disordered model in a suitable weak disorder and
continuum limit. (Consistent with Harris’ Criterion’74).

Inspired by Alberts-Khanin-Quastel’12 construction of the Continuum
Directed Polymer Model in dimension 1 + 1, we cast things in the
general framework of disorder relevance-irrelevance, give general
criteria for convergence to continuum disordered models, and apply
them to new models of interest.
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4.2 The General Setting

We first study continuum and weak disorder limits of the partition
function in a general setting, which incorporates all previous models.

Let Ω ⊂ Rd. For δ ∈ (0, 1), let Ωδ := Ω ∩ (δZ)d. Let (ωx)x∈Ωδ be i.i.d.
with E[ωx] = 0 and E[eλωx ] <∞ for all λ close to 0.

Let PΩδ be a probability measure on (σx)x∈Ωδ ∈ {0, 1}Ωδ that defines
the homogeneous reference model. Given ω, disorder strength λ and
bias h, add disorder in the form of a random field by defining

PωΩδ,λ,h(σ) =
1

ZωΩδ,λ,h
e
∑
x∈Ωδ

(λωx+h)σxPΩδ(σ),

where ZωΩδ,λ,h is the partition function.

To identify non-trivial disordered limits of ZωΩδ,λ,h in the continuum
and weak disorder limit δ ↓ 0, λ = λ(δ) ↓ 0, h = h(δ) ↓ 0, we first
rewrite ZωΩδ,λ,h in a polynomial chaos expansion.
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4.3 Polynomial Chaos Expansion for Partition Function
Because σx ∈ {0, 1}, by Mayer cluster expansion,

ZωΩδ,λ,h = EΩδ

[ ∏
x∈Ωδ

e(λωx+h)σx
]

= EΩδ

[ ∏
x∈Ωδ

(1 + ξxσx)
]

(ξx := eλωx+h − 1)

= 1 +

∞∑
k=1

∑
I={x1,...,xk}⊂Ωδ

|I|=k

EΩδ [σx1
· · ·σxk ] ξx1

· · · ξxk ,

which is multi-linear in the i.i.d. random variables (ξx)x∈Ωδ with

E[ξx] ≈ h(δ) +
λ2(δ)

2
=: h̃(δ), Var(ξx) ≈ λ2(δ) as δ ↓ 0.

Each ξx is associated with a cube ∆x of side length δ in (δZ)d, and we
can replace ξx by a normal variable with the same mean and variance

ξx −→
∫

∆x

λ(δ)δ−
d
2W (du) +

∫
∆x

h̃(δ)δ−ddu,

where W (du) is a d-dimensional white noise on Rd. This is justified by
a Lindeberg principle, extending Mossel-O’Donnell-Oleszkiewicz’10.
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4.4 Convergence to Wiener Chaos Expansions

We then have

ZωΩδ,λ,h
δ↓0
≈ 1+

∞∑
k=1

1

k!

∫
· · ·
∫

Ωk

EΩδ [σx1
· · ·σxk ]

k∏
i=1

(
λδ−

d
2W (dxi)+h̃δ

−ddxi
)
.

Key Assumption: ∃ γ ≥ 0 s.t. the rescaled k-point correlation function

(δ−γ)kEΩδ [σx1
· · ·σxk ]

L2

−→
δ↓0

ψΩ(x1, . . . , xk) ∈ L2(Ωk),

which entails that

ψΩ(x1, . . . , xk) ≈ ‖xi − xj‖−γ as xi → xj ,

and ψΩ(x1, . . . , xk) ∈ L2(Ωk) if and only if γ < d/2 (Harris Criterion
for disorder relevance!)

Remark. For PΩδ defined as a Gibbs measure, the Key Assumption
implies that the reference model PΩδ is at the critical point of a
continuous phase transition.
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4.4 Convergence to Wiener Chaos Expansions
Let

λ(δ) := λ̂δ
d
2−γ , h̃(δ) := ĥδd−γ for some λ̂ > 0, ĥ ∈ R.

Then by the assumed convergence of the k-point correlation functions,

ZωΩδ,λ,h
δ↓0
≈

1 +

∞∑
k=1

1

k!

∫
· · ·
∫

Ωk

δ−kγEΩδ [σx1
· · ·σxk ]

k∏
i=1

(
λδγ−

d
2W (dxi) + h̃δγ−ddxi

)

=⇒
δ→0
ZW

Ω,λ̂,ĥ
:= 1 +

∞∑
k=1

1

k!

∫
· · ·
∫

Ωk

ψΩ(x1, . . . , xk)

k∏
i=1

(
λ̂W (dxi) + ĥdxi

)
,

which is a Wiener-chaos expansion w.r.t. a white noise with possibly
non-zero mean (the expansion may diverge in L2!).

Remark. The above approach fails when γ = d/2, which is called the
marginal case and includes the pinning model with α = 1/2, the
short-range directed polymer in Z2+1, and the long-range directed
polymer in Z1+1 with α = 1.
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4.5 Scaling Limit of the Disordered Pinning Model

Ω := [0, 1], and PΩδ is the law of the rescaled renewal process. Then

(δmin{1,α}−1)kEΩδ [σx1 · · ·σxk ]
L2

−→
δ↓0

ψ(x1, . . . , xk),

where ψ is the correlation function of the α-stable regenerative set
and is in L2 exactly when α > 1

2 (disorder relevant regime). Let

λ(δ) = λ̂δmin{1,α}− 1
2 , h(δ) = ĥδmin{1,α} − λ2(δ)/2.

Then the partition function ZωΩδ,λ,h converges weakly to ZW
Ω,λ̂,ĥ

.
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4.6 Scaling Limit of the Long-range Directed Polymer

Let Ω := [0, 1]× R, and let Ωδ := Ω ∩ (δZ)× (δ1/αZ) with α ∈ (0, 2].
Let PΩδ be the law of a rescaled random walk, which converges in
distribution to an α-stable process as δ ↓ 0. Then

(δ−1/α)kEΩδ [σ(t1,x1) · · ·σ(tk,xk)]
L2

−→
δ↓0

ψ((t1, x1), . . . , (tk, xk)),

where ψ is the space-time correlation function of the α-stable process
and is in L2 exactly when α ∈ (1, 2] (disorder relevant regime). Let

λ(δ) = λ̂δ
α−1
2α .

Then the random partition function ZωΩδ,λ converges weakly to ZW
Ω,λ̂

,

generalizing work of Alberts-Khanin-Quastel’12 for the case α = 2.

Extending the weak convergence to the family of point-to-point
partition functions (Zω,cλ (s, x; t, y))0≤s<t≤1;x,y∈R, we obtain a family

of continuum partition functions (ZW,c
λ̂

(s, x; t, y))0≤s<t≤1;x,y∈R, which
can be used to construct the Continuum Long-range Directed
Polymer, extending Alberts-Khanin-Quastel’12.
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Polymer, extending Alberts-Khanin-Quastel’12.



4.7 Scaling Limit of the Random Field Ising Model

Let Ω ⊂ R2 be bounded, simply connected, with piecewise smooth
boundary. Let PΩδ be the law of the critical Ising model on Ωδ with
+ boundary condition. Chelkak-Hongler-Izyurov’12 have shown that

(δ−
1
8 )kE+

Ωδ
[σx1
· · ·σxk ]

p.w.−→
δ↓0

ψ+
Ω (x1, . . . , xk)

for some continuum correlation function ψ+
Ω . We obtain new bounds

on ψ+
Ω and extend the convergence to L2. Let

λ(δ) = λ̂δ
7
8 , h(δ) = ĥδ

15
8 .

Then the disordered partition function ZωΩδ,λ,h converges weakly to

ZW
Ω,λ̂,ĥ

with white noise disorder W .

Constructing a Continuum Random Field Ising Model out of ZW
Ω,λ̂,ĥ

seems highly non-trivial, although very interesting. It is expected to
be a generalized field, as in the case with no disorder (λ = 0)
constructed recently by Camia-Garban-Newman’13.
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5.2 Universality for Long-range Directed Polymer

For each α ∈ (1, 2], by taking the continuum and weak disorder limit,
we can construct a family of disordered point-to-point continuum
partition functions ZW

λ̂
(0, 0; t, x).

As a function in t ≥ 0 and x ∈ R, ZW
λ̂

(0, 0; t, x) is a mild solution for
the stochastic fractional heat equation

∂u

∂t
= ∆

α
2 u+ λ̂Wu,

u(0, ·) = δ0(·).

For α = 2, as λ̂ : 0 ↑ ∞, the distribution of logZW
λ̂

(0, 0; t, 0) is known
to smoothly interpolate between the Gaussian and the Tracy-Widom
GUE distribution, which gives the universal fluctuation of short-range
directed polymers in Z1+1.

Question: For α ∈ (1, 2), as λ̂ ↑ ∞, does the law of logZW
λ̂

(0, 0; t, 0)
converge to a limit that generalizes Tracy-Widom GUE and governs
the universal fluctuation of α-stable directed polymer in Z1+1?
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5.3 Open Questions for Random Field Ising

Go beyond the partition function and construct the Continuum
Random Field Ising Model as a generalized random field in a
white noise environment (extending Camia-Garban-Newman’13
for the non-disordered case). The law of the disordered field is
likely singular w.r.t. the non-disordered field. Such an object is
similar in spirit to solutions of singular SPDEs constructed via
Hairer’s theory of regularity structures.

Since the partition functions of the random field perturbation of
the critical Ising model on Z2 has non-trivial disordered limits, it
is natural to conjecture that disorder is relevant in the sense that:

Perturbing the critical Ising model on Z2 by a random field
(λωx + h)x∈Z2 with arbitrarily small λ > 0, the magnetization

m̂(λ, h) := lim
Ω↑Z2

EEωΩ,λ,h
[ 1

|Ω|
∑
x∈Ω

σx

]
≈ Chγ as h ↓ 0

for some critical exponent γ(λ)>γ(0) = 1
15 (we conjecture that

disorder has a smoothing effect on the phase transition in h).
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