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Outline
@ Stochastic analysis of static and evolving manifolds
© Characterizing Ricci curvature by functional inequalities
© Heat equations under geometric flows and entropy formulas



I. Motivation: Heat equation on a Riemannian manifold

@ Let (M,g) be a complete Riemannian manifold (M, g) and
L=A+Z with Zel(TM)

@ u be a positive solution to

0
Eu: Lu on MxR,

@ (Gradient estimate) Want to bound

Vu
|Vu| or u .
u

@ (Harnack inequalities) Want to compare
u(x,s) and u(y,t).

@ Why is Ricci curvature important for such questions?



Stationary solutions to the Laplace equation

@ Cheng-Yau (1975)
Let M be complete and D be some open, relatively compact
domain D in M. Assume that u is a positive harmonic function
on D:

Au=0
Then
IVul

( )<c(n)[\/_+

r(x)
if Ric|D>-K, K>0 (where r(x) =dist(x,0D) and
n=dimM).

The formula is easy to prove by probabilistic methods, e.g.
Arnaudon, Driver, Th. (2007).
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@ For L = A+ Zlet ube a solution to %u: Lu.

There is an exact formula for the differential
(Vu) (-, t)x
in terms of an L-diffusion starting from x:
Xe=X{, t<(x).

@ Recall that L-diffusions X; on M are defined by the property
that for each f € CZ°(M),

d(f(Xt)) - (L)(X)dt =0

(mod differentials of loc mart.)

5/23



@ Denote by
Ric? = Ric—-VZ

the Bakry-Emery Ricci tensor, i.e.
Ric?(X,Y) :=Ric(X,Y) —(VxZ,Y).

@ Let
Ricf :=//;" oRic§, o //; € End(TxM)

where //;: TM — TX{M is parallel transport along X; = XtX:

Tfofffzfﬁ TxM

Ric "
Iy ] /5

TX,M *Z> TXtM

Ric %

By convention RicZ(v) = RicZ(-,v)* for v e TyM.
X X



Damped parallel transport
@ For x € M define a linear transformation
Q: TM—T,M
as solution to the pathwise ODE
{th = -Q;Ricf, dt
Qo = idT,
@ In the sequel we need
Qo /(' TyM—T,M

(“damped parallel transport” along X;)
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Theorem (Gradient formulas)
Let f € (M) and u(x,t) = P;f(x) be the (minimal) solution to
Ju=Lu, ul,_,=f.
® (Semigroup formula) Then Pif(x) = B[f(X}) 1<z (x)]-
e (Derivative formula) If f € C}(M) and Ric? bounded below,

(VPi)(x) =E|Qi//7 V(X))

® (Bismut formula) If f € Z5(M) (no assumption on Ric), then

((VPtf)X,v):—E[f(th)l{k((X)} fo <Q;‘i’s,st>]

for each v € TyM, where
o 7=1p(x) At with tp(x) the first exit time of X} from some
relatively compact neighbourhood D of x
@ B is a Brownian motion in TyM
e {; is any adapted process in T,M with absolutely continuous
paths of finite energy such that o = v and ¢ = 0.




A first observation
@ Suppose that
CD(K,)  Ric?(X,X) = K|XP, XeTM,

for some constant K.

@ Then
Qi <e X, t>o.

@ Hence,
(gradient estimate) VPl < e KPPy V2, fe C;(M)-

@ Actually the gradient estimate is equivalent to CD(K, o).



Il. Stochastic flows
Let L be a second order PDO on M, e.g.

r
L=Ao+ ) AR,
i—1
where Ag, As,...,Ar € [(TM) for some r e N.

Let
XX = (X{)t=0

be an M-valued L-diffusion (or flow process to L) with starting
point x in the sense that X = x and for all f € C;°(M), the process

NI (x) ::f(XtX)—f(x)—ft(Lf)(X;()ds, t>0,
0

is a martingale, i.e.

E7s [f(XtX)—f(Xg)— fs t(Lf)(Xf)dr] =0, foralls<t.

= Nj(x) = N§(x)
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Recall Let Z be a Brownian motion on R". Then solutions X to the
Stratonovich SDE on M:

dX = Ag(X)dt + 3 A(X)odZ

i=1

are L-diffusions to the operator

L=Ao+ » A?

r

i=1
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Brownian motions and moving frames

Brownian motions on M are L-diffusions (stochastic flows) to the
Laplace-Beltrami operator A on M.

Good: We have a method to construct Brownian motions.

Bad: There is no canonical way to write A in Hérmander form as
a sum of squares.

Notation. Let 7: P — M be the G-principal bundle of orthonormal
frames with G = O(n). The fibre Py consists of the linear
isometries u: R" — T,M where u € P, is identified with the R-basis

(u1,...,up) := (uey,...,uep).

Write P = O(TM).
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U on O(TM)
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The Levi-Civita connection in TM induces canonically a
G-connection in P given as a G-invariant differentiable splitting h
of the following exact sequence of vector bundles over P:

0 —> kerdr ——> TP —2> 7*TM —> 0.
¥\ R4

-~ -

h

The splitting gives a decomposition of TP:
TP =V@H :=kerdra®h(x*TM).

For u € P, the space H, is called the horizontal space at u and
V,={veT,P: (dr)v=0}the vertical space at u.
The bundle isomorphism

h: "TM = H— TP
is the horizontal lift of the G-connection; fibrewise it reads as

hu: TauyM > H.
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@ The orthonormal frame bundle P = O(TM), considered as a
manifold, is parallelizable.

@ The horizontal subbundle H is trivialized by the
standard-horizontal vector fields Hy,...,Hp in T(TP) defined
by

Hi(u) := hy(uey).

@ The canonical second order partial differential operator
on O(TM),
n
A=) HP,
2

is called Bochner’s horizontal Laplacian.
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(a) Let Z be a semimartingale on R". Solve the following SDE on
the frame bundle P = O(TM):

n
dU= )" Hi(U)odZ', Uy=uo.
i=1

(b) Project U onto the manifold M:

X=mnolU

(c) From X we can recover again Z via Z = fuﬁ where U is the
unique horizontal lift of X to P with Uy = ug and

9 el(T*POR"), 9u(X,):=u'(dnX,), ueP,

the canonical 1-form.

We call X on M stochastic development of Z. The frame U moves
along X by stochastic parallel transport.

16/23



Theorem (Stochastic development)
The following three conditions are equivalent:

@ Z is a Brownian motion on R" (diffusion with generator Agn).
@ U is an L-diffusion on P = O(TM) to

n
L=aMr =3 H
i=1

@ X is a Brownian motion on M (diffusion with generator the
Laplace-Beltrami operator A on M).

Indeed: Use that
A" (for) = (Af)on
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Definition (Parallel transport along a semimartingale)
For 0 < s <, consider

Tx.M Tx,.M

k%

Rn

The isometries

s :=UoUg": Tx,M - Tx,M

are called stochastic parallel transport along X.
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Ill. Derivative formulas

@ (Process) X; is an L-diffusion where
L=A+Z with Zel(TM)
@ LetRic? =Ric-VZ,ie.
Ric?(X,Y) = Ric(X,Y) - (VxZ.Y).
@ Corresponding semigroup:
Pif(x) = E[f(X{) jt<c(xp], t20.

Goal: Stochastic formula for VP;f !
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@ Basic observation
Let Q; be the Aut(T,M)-valued process defined by

d . .
Eot = - (RICZ)//I, Qo = id1, M-
Fix t > 0. Then,
Ns = Qs//5" (VPisf)xs, 0<s<t,

is a local martingale in TyM.

@ How to check? Write everything as functions on O(TM), e.g.

to a € [(TM) consider
Fa: O(TM) > R",  Fa(u) = u'ayy).
Letting a; := VP;:f, we have
Ns = (QsUo) - Fa,_;(Us).

Use It6’s formula to calculate dN;.
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@ Suppose that
Ns = Qs//5" (VPrsf)yy, 0<s<t,

is a true martingale.

@ Then the equality E[No] = E[N;] gives the following
derivative formula

(VP (x) =E[Qi//{'VI(X))]. t=0.

@ This formula clearly requires conditions on boundedness of
Ric? from below. It can not hold in case of explosion of the
(A + Z)-diffusion.
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Fix t > 0. Since Ns = Qs//3" (VPt_sf)XSX is a local martingale, for
any adapted process {5 with absolutely continuous paths,

ng:= (Ns,{’s}—fOS(Nr,dfr)
= {((VPish)xs. /s Q;‘€S>—fos<(VPt,f)er,//,Q;‘i’,>dr
is a local martingale as well (0 < s <t). Thus
= ((VPr—s)xx /s Qs*fs)—f:((VPt_,f)er,//, dB,>fOS<Q;‘Z’r,dB,>
is a local martingale. But since
(Pr—sf)(X f ((VPy_,f) Xx //rdB;),
we finally see that
((VPi=sf)xx: /s Qs ts) — (Pr=sF)(XF) f(o;‘ {,,dB), 0<s<t,

is a local martingale.
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@ Choose ¢5 such that the local martingale nj is a true
martingale, and further such that £, = v and ¢; = 0.

@ This can always be achieved by taking s = 0 for s > t A 7(x)
where 7(x) is the first exit time of X from a relatively compact
neighborhood of x.

@ The equality

Blng] =E[n;, )]
then gives the Bismut formula

tAT(X) .
(vPi)v =510 i [ (1B
0

@ This formula doesn’t require any assumption on the geometry;
explosion of the diffusion is allowed.
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