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Outline
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© Characterizing Ricci curvature by functional inequalities
© Heat equations under geometric flows and entropy formulas



I. Stochastic analysis with respect to time dependent metrics

Let g(t) be a C' family of Riemannian metrics on a manifold M,
tel where I=[0,T*[or R.

@ A continuous adapted process X is called Brownian motion
with respect to g(t) if

Vfe C®(M),
d(f(Xt)) = (Agnyf) (Xt)dt =0 (mod loc mart)
@ We call X shortly a g(1)-Brownian motion on M.
@ We use the notation

X =X"%) txs, if Xs=x.



Geometries evolving in time: Deformation of Riemannian
metrics g(t) under certain evolution equations
Eminent example Ricci flow (R. Hamilton, 1982)

@ Start with a given metric go on M and let it evolve under

0 .
Eg(t) = —2Ricy(r), 9(0)=go

@ Idea behind Ricci flow: Ricci flow works as heat equation on
the space of Riemannian metrics.
@ For instance, in terms of local coordinates x;, if Ax; = 0, then

1
Ricj = 3 Agj + lower order terms.

@ The scalar curvature Scal := trace Ric satisfies the
reaction-diffusion equation

0
C,Ttsm = AScal + 2|Ric|?.



Depending on the sign + in

0

EQ(T) = +2Ricyp), 9(0) = Qo

we talk about backward/forward Ricci flow.
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Corollary (Evolution equation for densities)
Let

PIX% € dy) = p(x,s;y,t)voli(dy), s<t,

where vol;(dy) is the Riemannian volume on (M, g(t)).
Then

Py (f(x) = fM p(x,s: v, ) F(y) vols(cly).
Let p; = p(x,s;-,t).

For the forward Ricci flow, we have:

d
apt = Ag(t)pt + Scal( o t) Pt.

For the backward Ricci flow, we have:

d
Ftpt = Ag(t)pf - Scal( °g t) Pt .




Heat equation under moving Riemannian metrics

@ Study the heat equation under Ricci flow

@ Consider positive solutions u to the heat equation:

0

a—tu— Ag(t)u =0

0 .
Eg(t) = —2RICg(t)

or to the conjugate heat equation

0
Eu+Agmu—Scal(t, Ju=0

0 .
Eg(t) =-2 RICg(t)

Motivation comes from Perelman’s work
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Brownian motion on (M, g(t))

@ Let M := Mx I be space time and consider the tangent bundle
TM over M:
™5M, = projection.

@ There is a natural space-time connection on TM, considered
as bundle over space-time M, defined by

1
UxY=VJY and V,Y=aY+ E(a,gt)(v, e, gr=g(t).
@ This connection is compatible with the metric, i.e.
d e
gtl Ylg{ = 2< Ya Va( Y)gt

@ This connection allows to define parallel transport along
curves, but curves in space-time M, typically of the form

Yi=(Xp1), t€[0,T]
where p; is a monotone C' transformation of [0, T], e.g.

pt=t and p;=T-t.



@ Let (M,g:)tes Where [0, T] c | c R... Stochastic development
then gives space-time Brownian motions, like

(Xr,r) or (X.T-r)

@ More precisely, consider the O(n)-principal bundle of
orthonormal frames
F oM
with fibres
Fixry = (u: R" — (T¢M,gt) | u isometry}
and

m: F > M=MxI wheren(u)=(x,t) if ueF(yy)-

o Let
TF = Ve H:=kerdn®dh(x* TM)

be the induced splitting of TF.



@ In terms of the horizontal lift of the G-connection,
hy: T:r(u)M = H,, UEeF,

we get to each
aX+ B0 € T(x,t)M

and each frame u € # (4 1), @ unique “horizontal lift”
aX*+BD; € H,
of aX + Bd; such that
m.(aX*+BDy) = aX + Bo;.
@ In terms of the standard-horizontal vector fields on TF,
HieT(TF), Hi(u)=(ue)" =hy(uei), i=1,....n,

we define Bochner’s horizontal Laplacian on F:

n
Ahor = Z H,'2-
i=1

10/1



@ For p;: [0,T] — [0, T] monotone (here: p; =t or p;=T-1),
define

Dtp = p(t) Dt = iDt.

@ Consider the following Stratonovich SDE on ¥ :

n
dU = =Dy(U)dt+ > Hi(U)odZ', Up=u,
i=1

where Z is a continuous semimartingale taking values in R" .

@ If U solves the SDE then

n(Ut) = (Xt.pt)

for some process X on M, the stochastic development of Z.
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@ Modulo choice of initial conditions each of the three processes
X, U, Z determines the two others.
(1) We call (X;,pt) a (space-time) Brownian motion if Z is a
Brownian motion on R".
(2) We call (X;,p¢) a (space-time) martingale if Z is a local
martingale on R".

o Let
rs =UsoU': (T(M.g,) > (T,M.g,,), 0<r<s<T,

be parallel transport along X; (by construction consisting of
isometries!). For the sake of brevity write // := //0,5'

@ In the special case p; = t, resp. p; = T —t, we call (X;, 1),
resp. (X;, T —t) a Brownian motion on M based at (x,0),
resp. based at (x, T), if Xo = x. In the same way, we talk
about martingales on M based at (x,0), resp. (x, T).

12/



Il. First application: gradient-entropy estimate

@ Assume that all manifolds (M, g;) are complete (t € I).
Let u: M — R be a positive solution of the heat equation

ou
E = Agr u.

@ It is straightforward to check:

d [Vul?
(Ag(t)—a—t)(ulog U) = 0
vu vu

9 \IVuP 2 . 69( )
(Ag(t)_c?t) U u(2|VVIogu| +[2Ric + s\

@ Now assume that

0
a_gt’ > _2Ric,

i.e. (g¢) is a supersolution to the Ricci flow.
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@ Then, if (X;, T—1) is a Brownian motion based at (x, T) with
T € I, it is straightforward to check that the process

Vul?

Ne = (T—1) == (X:. T~ 1) + (ulogu)(X:, T-1), 0<t<T,

is a local submartingale.
@ Hence assuming that N; is a true submartingale, we obtain
E[No] < E[N7] which gives

T@(x T)+ (ulog u)(x, T) sE[(ulog u)(XT’o)]_
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Theorem

Keeping assumptions as above. For each positive solution
u:[0,T]xM — R to the time-dependent heat equation, we have

Vu

u

2 1 _[u(X7,0)  u(Xt,0)
1< 72| e 9 |

In particular,
(1) Then, for any 6 >0,

Vu 0 1
Mxn<2+L1E
‘u (xT) <33+ 55

u(Xt,0) U(XT,O)]
u(x,T) u(x,T)

(2) (Hamilton’s gradient estimate in global form)
If Mt := suppxo,7 U, then

IVl
&S T

mr
log———.
°9 u(x,T)
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lll. Characterization of bounded Ricci curvature (static case)

Our setting
@ (Process) X; is an L-diffusion where
L=A+2Z withZel(TM)
@ Assume that Ric? = Ric - VZ
Ric?(X, Y) = Ric(X, Y)—(VxZ,Y),
is bounded below, i.e., for some constant K,
Ric?(X,X) = K|X[2, XeTM.

@ Probabilistic ingredients:
@ (Semigroup formula)

Pif(x) = E[f(XX)]. t>0.

o (Derivative formula)

(VP (x) =E[Qu//'VAX)], t=0.
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Our focus

@ For real constants ki < ko, how to characterize
ki < Ric? < ko.

in terms of functional inequalities for the semigroup P;.
@ Natural extensions:
e Pointwise pinched curvature conditions

ki(x) <Ricf <ko(x), xeM

e Riemannian manifolds with a boundary
e Manifolds evolving under a geometric flow
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Well-known classical results: Let K be a real constant.
The following conditions are equivalent:

e (Bakry-Emery lower curvature bound)
CD(K,0)  Ric?(X,X) = KIX]?, XeTM;
@ (gradient estimate) for all f € CZ°(M),
VPP < e 2K PV,

@ (Poincare inequality) for all p € (1,2] and f € CZ°(M),

1-— e—2Kt

——PiVIZ;

— P (P (PP < e

4(p-1)
@ (log-Sobolev inequality) for all f € CZ (M),

2(1-e72K)

P(f?log f?) — (P:f?)log(P;f?) < PV 2.
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Equivalent statements to Bakry-Emery curvature condition

@ Gradient inequalities (Gaussian isoperimetric function),
Poincaré inequalities, log-Sobolev inequalities
Bakry (1994,1997); Bakry-Emery (1984);
Bakry-Ledoux (1996); Ledoux (2000); ...

@ Transportation-cost inequalities;
convexity properties of the entropy
von Renesse-Sturm (2005); Lott-Villani, Sturm, etc ...

@ Wang'’s dimension-free Harnack inequalities
Wang (1997, 2004, 2010); ...

@ Wang’s log-Harnack inequalities
Arnaudon-Wang-A.Th. (2014); ...

@ Harnack type inequalities
Bakry-Gentil-Ledoux (2012); ...
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Natural questions:
@ How to characterize upper bounds for Ric??
@ How to characterize pinched bounds for Ric??

Well-known:
Boundness of |[Ric?|, i.e.

IRic?| < K,

implies certain functional inequalities on path space,

e.g. Capitaine-Hsu-Ledoux (1997), Chen-Wu (2014),
Driver (1992), Hsu (1994)
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Boundedness of |Ric?|
The problem of characterizing boundedness of RicZhas been

solved by A. Naber and R. Haslhofer via analysis on path space:
Boundedness of |Ric?| <= functional inequalities on path space
@ Aaron Naber, Characterizations of bounded Ricci curvature on smooth and

nonsmooth spaces, arXiv:1306.6512v4 (2015)

@ Robert Haslhofer and Aaron Naber, Characterizations of the Ricci flow,
J. Eur. Math. Soc. (2016)

Our work:

@ Li-Juan Cheng and A.Th.: Characterization of pinched Ricci curvature by
functional inequalities, J. Geom. Anal. (2017)

@ Li-Juan Cheng and A.Th.: Spectral gap on Riemannian path space over
static and evolving manifolds, J. Funct. Anal. 274 (2018), 959-984
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IV. Analysis on path space
@ Forfixed T >0, let W™ = C([0, T]; M) and
ﬂC&’T:{WTByHf(yt1,...,ytn):
O<t<..<t,<T, feij’(M”)}.

be the class of smooth cylindrical functions on WT.

@ Denote
X[O,T] ={X;: 0<t<T}

@ For Fe ZCyr with F(y) = f(yy....,71,), the intrinsic gradient
is defined as

D/'F(Xp.m) Zlm,}//”vr(xh,.,xtn), telo,T],

where V' denotes the gradient with respect to the i-th
component.
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Theorem [A. Naber (2015) and R. Haslhofer and A. Naber (2016)]
The following conditions are equivalent (K > 0):
e Ric?|<K
@ (Gradient inequality on path space) for F € ¥ Cg’,
T
[VE[F(Xjo.77)]| < E[mg/ Fl+K f el |D!/F| dr}
0
@ (Quadratic gradient inequality on path space) for F € ¥ C,
T
IVE[F (X)) < eKTE[lDé/ FP+K f e D}/ F|2dr].
0

Important observation
It is sufficient to check the estimates for very special F € ¥ C;°.
Namely:

o for F(X[’E)’T]) = f(X}), and

@ for 2-point cylindrical functions of the form

FOG ) = 1x) = (X
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From this observation, equivalence of the following two items
follows:

(i) |Ric?| <K for K > 0;
(i) for fe CX(M) and t >0,
VP2 < e®KPVf? and

1 2 2
‘Vf——VPtf
2

1
< e8| 71 311 91(x)

+ %(e’“— 1)|Vf(Xt)|2}.

Remark The inequalities in (ii) can be combined to the single
condition:

VP12 — 2K Py V12

< 4((eM = 1)IV2 + (V£ VP — (VF.eME[//51VH(X,)])) AO.
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Theorem (Characterization of pinched Ricci curvature;

Cheng-A.Th. 2017)

Let k1, ko be two real constants such that ki < ko. The following
conditions are equivalent:

(i) ki <Ric? <k
(i) (Gradient inequalities) for f € C°(M) and t > 0,

VP — e 2Rt P Vi < 4[(e@f 1 )|vr|2
—kqt —1
+(VA,VPif) — e MIE(VS, //O’tVf(Xt)>] AO
(ii’) forfe CX(M) andt> 0,
VP2 — e~2ktp, |V |

ko—k
< 4(e%t|VPtf|2 - e MIE(VP, //&Wf(xf))) "o

25/
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Theorem (continuation)
(iii) (Poincaré type inequality) for f € CZ°(M), p€ (1,2],t >0,

2 _ 2/p\p _ A—2kqt
p(Pif= = (P=P)P) 1-e PVIP
4(p-1) 2ki

t _
s4f (e%(f—”q)ﬂwﬂ?
0

—|—]E<Vf(Xr),VPt_,f(X,) —e~h(t=n) /-] Vf(Xt)> dr A0

(iv) (Log-Sobolev inequality) for f € CZ(M), t >0,

1- e—2k1t

- PVf]?
2k, il

.
2 (Pi(?log ?) - Pif? log P1°) -

t _
<4 f (ekzzk‘ (“’)—1)P,|Vf|2
0

+E<Vf(X,),VPt_,f(X,) —e~h(t=n) /-1 Vf(Xt)> drn0
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The proof uses probabilistic formulas for calculating Ric?, e.g.
Bakry (1994), von Renesse-Sturm (2005), Wang (2014).

Lemma

Letve TyM with |v| =1. Let f € C5°(M) such that Vf(x) = v and
Hess¢(x) = 0. Then,

(1) forp >0,

PVIP(x) - VPP
RicZ(V,V):;irr(l) d I(X)ptl P (x)

(ii) Ric?(v,v) is also given by the following two limits:

o {(VABIGVAX)) = (VEVPID) ()
Ric (v,v)_P_r)TgJ :

i (VP B//5IVI(X)) ~ IV PR} (x)
_t—>0 t

27/
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The theorem can be extended in various ways:
@ to characterize variable curvature bounds

Ki(x) <Ric?(x) < Kao(x), xe€M,

with functions Ki, K> on M
@ to manifolds with boundary (reflecting diffusions generated by
L = A+ Z) to characterize

Ki(x) < Ric?(x) < Ka(x), xeM,

o1(x) < ll(x) < o2(x), xe€dM,
in terms of semigroups with Neumann boundary conditions.
The second fundamental form of M is given by

(X,Y)=—(VxN,Y), X,Ye TdM, x €M,

where N is the inward normal unit vector field on oM.

@ The theorem allows to characterize
e Einstein manifolds (Ric is a multiple of the metric g)
Ricci solitons (Ric + Hessf = cg)
manifolds such that Ric = VZ
etc
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V. Spectral gap on Riemannian path space
For F e #Cgr with F(y) = f(vt,,....71,), let

D{'F(X% 1) Z Lita) /g V(X X
be the intrinsic gradient, and

DiF (X, m) Z]{kt,Qtt,//”Vf( X

the damped gradient, where Q¢ takes values in the linear
automorphisms of TxxM satisfying for fixed t > 0:

dQLr .
ar

—ot,,Ric/Z/”, Q¢ =id.
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@ Let L be the Ornstein-Uhlenbeck operator defined as
generator associated to the Dirichlet form

E(F.F) = U D}/ FR(Xpo.r7) dt .

Goal is estimating the spectral gap of £ on manifolds of
pinched curvature.

@ For constants ki < ko let

1+K2 - _
DI'F( (X5.7) Z'M 2 (0 T X
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Theorem (Path space characterization of pinched curvature)
The following conditions are equivalent:
(i) ki <Ric? < ko;
(ii) forany F e 5‘C§°T,

[VXEF(XE 1)

(iii) forany F e Cgf’T and t; <ty in [0, T],

E[E[FZ(X[O,T]N%Z]|OQE[F2(X[0,T])|%2]]

—E[E[FZ(X[O,T])WH] I0g E[F?(Xjo.1))- %, ]]

o T
£2f (1 4 ek k1f e—k1(s—t)ds)
t t

.
x(Euﬁ{/ IR+ gl f e"“(s‘t)Elf)é/Flzds)dt
t

.
)| <EID) F|+ f5k f e MSEID} F|ds;
0
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Theorem
Assume kq < Ric? < ko. Then

gap(L)™" < C(T, ki, k| V |kal)
AC(T. k. "5 ) x o (T, fagle, lalel)]
where
C(T.K1,Kz)
1+KaT+ K%Tz, Ki =0;
=100 +B)?-BV(2+8)(2+28-BeKiT)e T2 K >0;
b+ 3(1+8(1-e )Y, K1 <0.
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VI. Geometries evolving in time

@ Let g(t)tes be a C' family of Riemannian metrics on M and let
M := M x | be space time.

@ For s € I, suppose that

(Xt )tss

is Brownian motion on M based at (x, s), i.e., Xs = x and
Vfe C®(M),

d(f(Xt)) = Agnf(Xt)dt =0 (mod loc mart).
@ We call X; a g(t)-Brownian motion on M, and write

X =Xx") t>s.

o (Semigroup) Psf(x) := B[f(X™*))] for s <tin I.
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@ Let (M, g;)el be a smooth family of Riemannian metrics. Write
Ric;, V! for the Ricci tensor, Levi-Civita connection with
respect to g, respectively.

@ Let (Z;)tes be a smooth family of vector fields on M and
Li = At + 2.
@ Define

RE(X,Y) :=Rici(X, Y) =(V5Z0. V), = 5(0:91) (X, )

_1
2
e Finally, for f € Cp(M),

Psf(x) :=E[f(X*))| =E®9I[f(X)]. 0<s<tinl,

where X%

h is a Li-diffusion starting from x at time s.
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Theorem (Cheng-A.Th. 2017)

Let (t,x) — Ki(t,x) and (t,x) — Kx(t,x) be two continuous
functions on I x M such that K1 < Ko (satisfying some weak
integrability conditions).

The following statements are equivalent:
(1) the curvature th satisfies

Ki(t,x) < RE(x) < Ka(t,x), (t,x)elxM;
(ii) forfe C’(M) and0<s<tinl,
|VS PS,tflg _ E(X,S) [e_zf; Ky (r,X,) ar |th|t2(Xt):|
< 4[(E(X,s)e%J:(K2(r,Xr)—K1 (r,X,))dr _ 1)|st|§ 4 <st, VSPS ff>s

—(vet, E(X»S)[e‘fst & ("X’)d'//s_,;vtf(X’)Ds] i
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(iii) for fe C’(M), pe(1,2]and0<s<tin],

p(Ps 1 — (Psf?/P)P)
4(p-1)

§4f[ E(9) o} (Ko(nXe)—Ks (5X)) ]Psrw 2
S

t
_E(X,S) [f e—2frtK1 (T,XT)der x |Vl‘f|?(xt):|
S
t
+EXS) <vff(x,),var,,f(X,) — e~ f K xeydr fo(xt)>r dr AO;
(iv) for fe C’(M)and0<s<tin |,
1
2 (Ps.1(2log 2) - Ps 1% log Ps.11?)
t
_E(X,S) |:f e—QJ;tK1 (t.Xr)dr dr x |th|$(xt):|

S

S4f [ E9) g3 [} (Ka(r.Xe)~K (1.X))dr ]PerV f2
S

+E(X,S) <Vrf(Xr),VrPr,tf(Xr) — e_frt Ki (T’XT)dT//E; th(Xt)> ar Q.
r

v




Corollary [Cheng-A.Th. 2017]

Let (t,x) — K(t,x) be some continuous function on /x M. The following
statements are equivalent to each other:

(i) the family (M, g;):er evolves by

1

Eﬁtg, = Ric;-V'Z—K(t,-)gr, tel
(ii) for fe C’(M)and0<s<tin |,

t
& Ps,tfli _ E(x,s)[e—zfs K(r,X,)dertﬂ?(Xt)]

< 4[<st, V5P ) — <v3f,E(X»S> [e*fst K(rxp)dr -1 gt f(x,)]> ] AO;
’ s

(iii) version of a Poincaré inequality

(iv) version of a log-Sobolev inequality
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@ If Z; =0 and K = 0, the results characterize solutions to the
Ricci flow; see Haslhofer and Naber (2016) for functional
inequalities on path space characterizing Ricci flow.
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Example: Ricci flow

@ Consider the heat equation under Ricci flow:
—Uu-Agu=0

The case of forward Ricci flow we get by reparametrizing the
metric:

gt = 01—t
o Let
u(x,t) = (Psf)(x), 0<s<tinl.
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@ We have
Psif(x) = E[f(xt(x’s))], 0<s<t,
and

VoPif(x) = | Quil/s 1 VIHX)| 0ss <t

where Qs € Aut(Tx,M) is constructed as solution to the
equation:
dos,t
dt

=-QstRy,,» Qss=1id.
@ Recall
_ . 1
Rity, = //s,; (Rlcgr - Eatgt) llspr £2=0, Kt =Kz =K=0.

@ We see that Q. ; = identity if and only if the metric evolves by
(backward) Ricci flow.

@ This explains why Riemannian manifolds evolving under Ricci
flow share many properties of Ricci flat static manifolds.
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Supersolutions to the Ricci flow

For a smooth family (M, g(t)):e; of Riemannian metrics are
equivalent:

@ (M,g(t))ies is a supersolution to the Ricci flow, i.e.

) 0
2R1Cg(t) - 8—1_9(1’) >0.

@ For each f € CZ°(M) the heat flow on (M, g(t)):/ satisfies

|VSPS,tf|g(S) < Ps,tlvtﬂg( 0<s<tinl.

t)’
@ For each f € C°(M) the heat flow on (M, g(t)):e/ satisfies

VoPsif26) < PstlV' TRy, O<s<tinl.
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o Let P(*$)M be the space of continuous paths on M, starting in
x at time s and P(*%) the probability measure on it, induced by
the (inhomogeneous) BM

X(X’S)

Xt

@ For a cylindrical function F on P8I M with

F(’)/):f(’yh,...,’ytr), S<H<..<K<t,

consider again the intrinsic gradient defined as
Dé/F Sf] Z//Stl g(t) Xﬁ"--’XTr)’

where V' denotes the gradient with respect to the i-th
component.
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Characterization of solutions to the Ricci flow

For a smooth family (M, g(t)):c of Riemannian metrics are
equivalent:

@ (M,g(t))ses is a solution to the Ricci flow, i.e.

0 .
ag(t) — 2R1Cg(t) =0.

@ For each cylindrical function F: P*$)M — R,
IVSEXS)F| < E)| DL/ F.

@ For each cylindrical function F: PX$)M — R,

IVSECS) FR < ECS)|D// FP.

Here || = |-lg(s)-
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