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I. Stochastic analysis with respect to time dependent metrics

Let g(t) be a C1 family of Riemannian metrics on a manifold M,
t ∈ I where I = [0,T∗[ or R+.

A continuous adapted process X is called Brownian motion
with respect to g(t) if

∀ f ∈ C∞(M),

d(f(Xt ))− (∆g(t)f)(Xt )dt = 0 (mod loc mart)

We call X shortly a g(t)-Brownian motion on M.

We use the notation

Xt = X (x,s)
t , t ≥ s, if Xs = x.
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Geometries evolving in time: Deformation of Riemannian
metrics g(t) under certain evolution equations

Eminent example Ricci flow (R. Hamilton, 1982)

Start with a given metric g0 on M and let it evolve under

∂

∂t
g(t) = −2Ricg(t), g(0) = g0

Idea behind Ricci flow: Ricci flow works as heat equation on
the space of Riemannian metrics.
For instance, in terms of local coordinates xi , if ∆xi = 0, then

Ricij = −
1
2

∆gij + lower order terms.

The scalar curvature Scal := traceRic satisfies the
reaction-diffusion equation

∂

∂t
Scal = ∆Scal + 2|Ric|2.
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Depending on the sign ± in

∂

∂t
g(t) = ±2Ricg(t), g(0) = g0

we talk about backward/forward Ricci flow.
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Corollary (Evolution equation for densities)

Let
P{X (x,s)

t ∈ dy}= p(x,s;y, t)volt (dy), s < t ,

where volt (dy) is the Riemannian volume on (M,g(t)).
Then

Ps,t f(x) =

∫
M

p(x,s;y, t) f(y)volt (dy).

Let pt = p(x,s; ·, t).

For the forward Ricci flow, we have:

d
dt

pt = ∆g(t)pt + Scal(·, t)pt .

For the backward Ricci flow, we have:

d
dt

pt = ∆g(t)pt −Scal(·, t)pt .
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Heat equation under moving Riemannian metrics

Study the heat equation under Ricci flow

Consider positive solutions u to the heat equation:
∂

∂t
u−∆g(t)u = 0

∂

∂t
g(t) = −2Ricg(t)

or to the conjugate heat equation
∂

∂t
u + ∆g(t)u−Scal(t , ·)u = 0

∂

∂t
g(t) = −2Ricg(t)

Motivation comes from Perelman’s work
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Brownian motion on (M,g(t))

LetM := M× I be space time and consider the tangent bundle
TM overM:

TM
π
−−→M , π projection.

There is a natural space-time connection on TM, considered
as bundle over space-timeM, defined by

∇X Y = ∇
gt
X Y and ∇∂t Y = ∂tY +

1
2

(∂tgt )(Y , ·)]gt , gt = g(t).

This connection is compatible with the metric, i.e.

d
dt
|Y |2gt

= 2〈Y ,∇∂t Y〉gt

This connection allows to define parallel transport along
curves, but curves in space-timeM, typically of the form

γt = (xt ,ρt ), t ∈ [0,T ]

where ρt is a monotone C1 transformation of [0,T ], e.g.

ρt = t and ρt = T − t .
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Let (M,gt )t∈I where [0,T ] ⊂ I ⊂ R+. Stochastic development
then gives space-time Brownian motions, like

(Xr , r) or (Xr ,T − r)

More precisely, consider the O(n)-principal bundle of
orthonormal frames

F
π
−→M

with fibres

F(x,t) =
{
u : Rn→ (TxM,gt ) | u isometry

}
and

π : F →M= M× I where π(u) = (x, t) if u ∈ F(x,t).

Let
TF = V ⊕H := kerdπ⊕h(π∗TM)

be the induced splitting of TF .
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In terms of the horizontal lift of the G-connection,

hu : Tπ(u)M ∼
−→ Hu, u ∈ F ,

we get to each
αX +β∂t ∈ T(x,t)M

and each frame u ∈ F(x,t), a unique “horizontal lift”

αX∗+βDt ∈ Hu

of αX +β∂t such that

π∗(αX∗+βDt ) = αX +β∂t .

In terms of the standard-horizontal vector fields on TF ,

Hi ∈ Γ(TF ), Hi(u) = (uei)
∗ ≡ hu(uei), i = 1, . . . ,n,

we define Bochner’s horizontal Laplacian on F :

∆hor =
n∑

i=1

H2
i .
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For ρt : [0,T ]→ [0,T ] monotone (here: ρt = t or ρt = T − t),
define

Dρ
t := ρ̇(t)Dt = ±Dt .

Consider the following Stratonovich SDE on F :

dU = ±Dt (U)dt +
n∑

i=1

Hi(U)◦dZ i , U0 = u,

where Z is a continuous semimartingale taking values in Rn .

If U solves the SDE then

π(Ut ) = (Xt ,ρt )

for some process X on M, the stochastic development of Z .
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Modulo choice of initial conditions each of the three processes
X ,U,Z determines the two others.

(1) We call (Xt ,ρt ) a (space-time) Brownian motion if Z is a
Brownian motion on Rn.

(2) We call (Xt ,ρt ) a (space-time) martingale if Z is a local
martingale on Rn.

Let

//r ,s := Us ◦U−1
r : (Txr M,gρr

)→ (Txs M,gρs
), 0 ≤ r ≤ s ≤ T ,

be parallel transport along Xt (by construction consisting of
isometries!). For the sake of brevity write //s := //0,s .

In the special case ρt = t , resp. ρt = T − t , we call (Xt , t),
resp. (Xt ,T − t) a Brownian motion onM based at (x,0),
resp. based at (x,T), if X0 = x. In the same way, we talk
about martingales onM based at (x,0), resp. (x,T).

12 / 1



II. First application: gradient-entropy estimate

Assume that all manifolds (M,gt ) are complete (t ∈ I).
Let u : M→ R be a positive solution of the heat equation

∂u
∂t

= ∆gt u.

It is straightforward to check:(
∆g(t)−

∂

∂t

)
(u logu) =

|∇u|2

u
,(

∆g(t)−
∂

∂t

)
|∇u|2

u
= u

(
2|∇∇ logu|2 +

(
2Ric +

∂g
∂t

)(
∇u
u
,
∇u
u

))

Now assume that
∂g
∂t
≥ −2Ric,

i.e. (gt ) is a supersolution to the Ricci flow.
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Then, if (Xt ,T − t) is a Brownian motion based at (x,T) with
T ∈ I, it is straightforward to check that the process

Nt := (T − t)
|∇u|2

u
(Xt ,T − t) +

(
u logu

)
(Xt ,T − t), 0 ≤ t ≤ T ,

is a local submartingale.

Hence assuming that Nt is a true submartingale, we obtain
E[N0] ≤ E[NT ] which gives

T
|∇u|2

u
(x,T) +

(
u logu

)
(x,T) ≤ E

[(
u logu

)
(XT ,0)

]
.
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Theorem
Keeping assumptions as above. For each positive solution
u : [0,T ]×M→ R+ to the time-dependent heat equation, we have∣∣∣∣∣∇u

u

∣∣∣∣∣2 (x,T) ≤
1
T
E

[
u(XT ,0)

u(x,T)
log

u(XT ,0)

u(x,T)

]
.

In particular,

(1) Then, for any δ > 0,∣∣∣∣∣∇u
u

∣∣∣∣∣(x,T) ≤
δ

2T
+

1
2δ
E

[
u(XT ,0)

u(x,T)
log

u(XT ,0)

u(x,T)

]
(2) (Hamilton’s gradient estimate in global form)

If mT := supM×[0,T ]u, then

|∇u|
u

(x,T) ≤
1

T1/2

√
log

mT

u(x,T)
.
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III. Characterization of bounded Ricci curvature (static case)
Our setting

(Process) Xt is an L -diffusion where

L = ∆ + Z with Z ∈ Γ(TM)

Assume that RicZ = Ric−∇Z

RicZ (X ,Y) = Ric(X ,Y)−〈∇X Z ,Y〉,

is bounded below, i.e., for some constant K ,

RicZ (X ,X) ≥ K |X |2, X ∈ TM.

Probabilistic ingredients:
(Semigroup formula)

Pt f(x) = E[f(Xx
t )], t ≥ 0.

(Derivative formula)

(∇Pt f)(x) = E
[
Qt//

−1
t ∇f(Xx

t )
]
, t ≥ 0.
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Our focus
For real constants k1 ≤ k2, how to characterize

k1 ≤ RicZ ≤ k2.

in terms of functional inequalities for the semigroup Pt .
Natural extensions:

Pointwise pinched curvature conditions

k1(x) ≤ RicZ
x ≤ k2(x), x ∈M

Riemannian manifolds with a boundary
Manifolds evolving under a geometric flow
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Well-known classical results: Let K be a real constant.
The following conditions are equivalent:

(Bakry-Émery lower curvature bound)

CD(K ,∞) RicZ (X ,X) ≥ K |X |2, X ∈ TM;

(gradient estimate) for all f ∈ C∞c (M),

|∇Pt f |2 ≤ e−2KtPt |∇f |2;

(Poincaré inequality) for all p ∈ (1,2] and f ∈ C∞c (M),

p
4(p−1)

(
Pt f2− (Pt f2/p)p

)
≤

1−e−2Kt

2K
Pt |∇f |2;

(log-Sobolev inequality) for all f ∈ C∞c (M),

Pt (f2 log f2)− (Pt f2) log(Pt f2) ≤
2(1−e−2Kt )

K
Pt |∇f |2.

...
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Equivalent statements to Bakry-Émery curvature condition

Gradient inequalities (Gaussian isoperimetric function),
Poincaré inequalities, log-Sobolev inequalities
Bakry (1994,1997); Bakry-Émery (1984);
Bakry-Ledoux (1996); Ledoux (2000); . . .

Transportation-cost inequalities;
convexity properties of the entropy
von Renesse-Sturm (2005); Lott-Villani, Sturm, etc . . .

Wang’s dimension-free Harnack inequalities
Wang (1997, 2004, 2010); . . .

Wang’s log-Harnack inequalities
Arnaudon-Wang-A.Th. (2014); . . .

Harnack type inequalities
Bakry-Gentil-Ledoux (2012); . . .

· · ·
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Natural questions:

How to characterize upper bounds for RicZ?

How to characterize pinched bounds for RicZ?

Well-known:

Boundness of |RicZ |, i.e.

|RicZ | ≤ K ,

implies certain functional inequalities on path space,

e.g. Capitaine-Hsu-Ledoux (1997), Chen-Wu (2014),
Driver (1992), Hsu (1994)
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Boundedness of |RicZ |

The problem of characterizing boundedness of RicZhas been
solved by A. Naber and R. Haslhofer via analysis on path space:

Boundedness of |RicZ | ⇐⇒ functional inequalities on path space

Aaron Naber, Characterizations of bounded Ricci curvature on smooth and
nonsmooth spaces, arXiv:1306.6512v4 (2015)

Robert Haslhofer and Aaron Naber, Characterizations of the Ricci flow,
J. Eur. Math. Soc. (2016)

Our work:
Li-Juan Cheng and A.Th.: Characterization of pinched Ricci curvature by
functional inequalities, J. Geom. Anal. (2017)

Li-Juan Cheng and A.Th.: Spectral gap on Riemannian path space over
static and evolving manifolds, J. Funct. Anal. 274 (2018), 959-984
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IV. Analysis on path space

For fixed T > 0, let WT = C([0,T ];M) and

FC∞0,T =
{
WT 3 γ 7→ f(γt1 , . . . ,γtn ) :

0 < t1 < . . . < tn ≤ T , f ∈ C∞c (Mn)
}
.

be the class of smooth cylindrical functions on WT .

Denote
X[0,T ] = {Xt : 0 ≤ t ≤ T }.

For F ∈FC∞0,T with F(γ) = f(γt1 , . . . ,γtn ), the intrinsic gradient
is defined as

D//
t F(X[0,T ]) =

n∑
i=1

1{t<ti } //
−1
t ,ti ∇

i f(Xt1 , . . . ,Xtn ), t ∈ [0,T ],

where ∇i denotes the gradient with respect to the i-th
component.
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Theorem [A. Naber (2015) and R. Haslhofer and A. Naber (2016)]
The following conditions are equivalent (K ≥ 0):

|RicZ | ≤ K
(Gradient inequality on path space) for F ∈ FC∞0 ,∣∣∣∇E[F(X[0,T ])]

∣∣∣ ≤ E [|D//
0 F |+ K

∫ T

0
eKr |D//

r F |dr
]

(Quadratic gradient inequality on path space) for F ∈ FC∞0 ,∣∣∣∇E[F(X[0,T ])]
∣∣∣2 ≤ eKT E

[
|D//

0 F |2 + K
∫ T

0
eKr |D//

r F |2 dr
]
.

Important observation
It is sufficient to check the estimates for very special F ∈ FC∞0 .
Namely:

for F(Xx
[0,T ]) = f(Xx

t ), and
for 2-point cylindrical functions of the form

F(Xx
[0,T ]) = f(x)−

1
2

f(Xx
t )
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From this observation, equivalence of the following two items
follows:

(i) |RicZ | ≤ K for K ≥ 0;

(ii) for f ∈ C∞c (M) and t > 0,

|∇Pt f |2 ≤ e2KtPt |∇f |2 and∣∣∣∣∣∇f −
1
2
∇Pt f

∣∣∣∣∣2 ≤ eKtE

[ ∣∣∣∣∣∇f −
1
2
//−1

0,t ∇f(Xt )

∣∣∣∣∣2
+

1
4

(
eKt −1

)
|∇f(Xt )|

2
]
.

Remark The inequalities in (ii) can be combined to the single
condition:

|∇Pt f |2−e2KtPt |∇f |2

≤ 4
(
(eKt −1)|∇f |2 + 〈∇f ,∇Pt f〉−

〈
∇f ,eKtE[//−1

0,t ∇f(Xt )]
〉)
∧0.
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Theorem (Characterization of pinched Ricci curvature;
Cheng-A.Th. 2017)

Let k1,k2 be two real constants such that k1 ≤ k2. The following
conditions are equivalent:

(i) k1 ≤ RicZ ≤ k2

(ii) (Gradient inequalities) for f ∈ C∞c (M) and t > 0,

|∇Pt f |2−e−2k1tPt |∇f |2 ≤ 4
[(

e
k2−k1

2 t −1
)
|∇f |2

+ 〈∇f ,∇Pt f〉−e−k1tE
〈
∇f , //−1

0,t ∇f(Xt )
〉]
∧0

(ii’) for f ∈ C∞c (M) and t > 0,

|∇Pt f |2−e−2k1tPt |∇f |2

≤ 4
(
e

k2−k1
2 t |∇Pt f |2−e−k1tE

〈
∇Pt f , //−1

0,t ∇f(Xt )
〉)
∧0
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Theorem (continuation)

(iii) (Poincaré type inequality) for f ∈ C∞c (M), p ∈ (1,2], t > 0,

p(Pt f2− (Pt f2/p)p)

4(p−1)
−

1−e−2k1t

2k1
Pt |∇f |2

≤ 4
∫ t

0

(
e

k2−k1
2 (t−r)−1

)
Pr |∇f |2

+E
〈
∇f(Xr),∇Pt−r f(Xr)−e−k1(t−r)//−1

r ,t ∇f(Xt )
〉

dr ∧0

(iv) (Log-Sobolev inequality) for f ∈ C∞c (M), t > 0,

1
4

(
Pt (f2 log f2)−Pt f2 logPt f2

)
−

1−e−2k1t

2k1
Pt |∇f |2

≤ 4
∫ t

0

(
e

k2−k1
2 (t−r)−1

)
Pr |∇f |2

+E
〈
∇f(Xr),∇Pt−r f(Xr)−e−k1(t−r)//−1

r ,t ∇f(Xt )
〉

dr ∧0
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The proof uses probabilistic formulas for calculating RicZ , e.g.
Bakry (1994), von Renesse-Sturm (2005), Wang (2014).

Lemma

Let v ∈ TxM with |v |= 1. Let f ∈ C∞0 (M) such that ∇f(x) = v and
Hessf (x) = 0. Then,

(i) for p > 0,

RicZ (v ,v) = lim
t→0

Pt |∇f |p(x)− |∇Pt f |p(x)

pt

(ii) RicZ (v ,v) is also given by the following two limits:

RicZ (v ,v) = lim
t→0

{〈
∇f ,E//−1

0,t ∇f(Xt )
〉
−〈∇f ,∇Pt f〉

}
(x)

t

= lim
t→0

{〈
∇Pt f ,E//−1

0,t ∇f(Xt )
〉
− |∇Pt f |2

}
(x)

t
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The theorem can be extended in various ways:
to characterize variable curvature bounds

K1(x) ≤ RicZ (x) ≤ K2(x), x ∈M,

with functions K1, K2 on M
to manifolds with boundary (reflecting diffusions generated by
L = ∆ + Z) to characterize

K1(x) ≤ RicZ (x) ≤ K2(x), x ∈M,

σ1(x) ≤ II(x) ≤ σ2(x), x ∈ ∂M,

in terms of semigroups with Neumann boundary conditions.
The second fundamental form of ∂M is given by

II(X ,Y) = −〈∇X N,Y〉 , X ,Y ∈ Tx∂M, x ∈ ∂M,

where N is the inward normal unit vector field on ∂M.
The theorem allows to characterize

Einstein manifolds (Ric is a multiple of the metric g)
Ricci solitons (Ric + Hessf = c g)
manifolds such that Ric = ∇Z
etc
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V. Spectral gap on Riemannian path space
For F ∈FC∞0,T with F(γ) = f(γt1 , . . . ,γtn ), let

D//
t F(Xx

[0,T ]) =
n∑

i=1

1{t<ti } //
−1
t ,ti ∇i f(Xx

t1 , . . . ,X
x
tn )

be the intrinsic gradient , and

DtF(Xx
[0,T ]) =

n∑
i=1

1{t<ti }Qt ,ti//
−1
t ,ti ∇i f(Xx

t1 , . . . ,X
x
tn )

the damped gradient , where Qt ,r takes values in the linear
automorphisms of TXx

t
M satisfying for fixed t ≥ 0:

dQt ,r

dr
= −Qt ,r RicZ

//t ,r
, Qt ,t = id.
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Let L be the Ornstein-Uhlenbeck operator defined as
generator associated to the Dirichlet form

E(F ,F) = E

[∫ T

0
|D//

t F |2(X[0,T ])dt
]
.

Goal is estimating the spectral gap of L on manifolds of
pinched curvature.

For constants k1 ≤ k2 let

D̂//
t F(Xx

[0,T ]) =
n∑

i=1

1{t≤ti }e
−

k1+k2
2 (ti−t)//−1

t ,ti ∇i f(Xx
t1 , . . . ,X

x
tn )

30 / 1



Theorem (Path space characterization of pinched curvature)

The following conditions are equivalent:

(i) k1 ≤ RicZ ≤ k2;

(ii) for any F ∈FC∞0,T ,∣∣∣∇xEF(Xx
[0,T ])

∣∣∣ ≤ E|D̂//
0 F |+ k2−k1

2

∫ T

0
e−k1s E|D̂//

s F |ds;

(iii) for any F ∈FC∞0,T and t1 < t2 in [0,T ],

E
[
E[F2(X[0,T ])|Ft2 ] logE[F2(X[0,T ])|Ft2 ]

]
−E

[
E[F2(X[0,T ])|Ft1 ] logE[F2(X[0,T ])|Ft1 ]

]
≤ 2

∫ t2

t1

(
1 + k2−k1

2

∫ T

t
e−k1(s−t)ds

)
×

(
E|D̂//

t F |2 + k2−k1
2

∫ T

t
e−k1(s−t)E|D̂//

s F |2ds
)
dt .
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Theorem

Assume k1 ≤ RicZ ≤ k2. Then

gap(L)−1 ≤ C(T ,k1, |k1| ∨ |k2|)

∧
[
C

(
T ,k1,

k2−k1
2

)
×C

(
T , k1+k2

2 , |k1+k2 |
2

)]
where

C(T ,K1,K2)

=


1 + K2T +

K2
2 T2

2 , K1 = 0;

(1 +β)2−β
√

(2 +β)(2 + 2β−βe−K1T )e−K1T/2, K1 > 0;
1
2 + 1

2

(
1 +β(1−e−K1T )

)2
, K1 < 0.

with β = K2/K1.
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VI. Geometries evolving in time

Let g(t)t∈I be a C1 family of Riemannian metrics on M and let
M := M× I be space time.

For s ∈ I, suppose that

(Xt , t)t≥s

is Brownian motion onM based at (x,s), i.e., Xs = x and
∀ f ∈ C∞(M),

d(f(Xt ))−∆g(t)f (Xt )dt = 0 (mod loc mart).

We call Xt a g(t)-Brownian motion on M, and write

Xt = X (x,s)
t , t ≥ s.

(Semigroup) Ps,t f(x) := E[f(X (x,s)
t )] for s ≤ t in I.
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Let (M,gt )t∈I be a smooth family of Riemannian metrics. Write
Rict , ∇t for the Ricci tensor, Levi-Civita connection with
respect to gt , respectively.

Let (Zt )t∈I be a smooth family of vector fields on M and

Lt = ∆t + Zt .

Define

RZ
t (X ,Y) := Rict (X ,Y)−

〈
∇t

X Zt ,Y
〉

t
−

1
2

(∂tgt )(X ,Y)

Finally, for f ∈ Cb(M),

Ps,t f(x) := E
[
f(X (x,s)

t )
]

= E(x,s)
[
f(Xt )

]
, 0 ≤ s ≤ t in I,

where X (x,s)
t is a Lt -diffusion starting from x at time s.
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Theorem (Cheng-A.Th. 2017)

Let (t ,x) 7→ K1(t ,x) and (t ,x) 7→ K2(t ,x) be two continuous
functions on I×M such that K1 ≤ K2 (satisfying some weak
integrability conditions).

The following statements are equivalent:

(i) the curvature RZ
t satisfies

K1(t ,x) ≤ RZ
t (x) ≤ K2(t ,x), (t ,x) ∈ I×M;

(ii) for f ∈ C∞0 (M) and 0 ≤ s ≤ t in I,

|∇sPs,t f |2s −E
(x,s)

[
e−2

∫ t
s K1(r ,Xr )dr

|∇t f |2t (Xt )
]

≤ 4
[(
E(x,s)e

1
2

∫ t
s (K2(r ,Xr )−K1(r ,Xr ))dr

−1
)
|∇s f |2s +

〈
∇s f ,∇sPs,t f

〉
s

−
〈
∇s f ,E(x,s)

[
e−

∫ t
s K1(r ,Xr )dr//−1

s,t ∇
t f(Xt )

]〉
s

]
∧0;
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Theorem–cont.
(iii) for f ∈ C∞0 (M), p ∈ (1,2] and 0 ≤ s ≤ t in I,

p(Ps,t f2− (Ps,t f2/p)p)

4(p−1)
−E(x,s)

[∫ t

s
e−2

∫ t
r K1(τ,Xτ)dτdr × |∇t f |2t (Xt )

]
≤ 4

∫ t

s

[
E(x,s)e

1
2

∫ t
r (K2(τ,Xτ)−K1(τ,Xτ))dτ−1

]
Ps,r |∇

r f |2r

+E(x,s)
〈
∇r f(Xr ),∇

rPr ,t f(Xr )−e−
∫ t
r K1(τ,Xτ)dτ//−1

r ,t ∇
t f(Xt )

〉
r

dr ∧0;

(iv) for f ∈ C∞0 (M) and 0 ≤ s ≤ t in I,

1
4

(
Ps,t (f2 log f2)−Ps,t f2 logPs,t f2

)
−E(x,s)

[∫ t

s
e−2

∫ t
r K1(τ,Xτ)dτ dr × |∇t f |2t (Xt )

]
≤ 4

∫ t

s

[
E(x,s)e

1
2

∫ t
r (K2(τ,Xτ)−K1(τ,Xτ))dτ−1

]
Ps,r |∇

r f |2r

+E(x,s)
〈
∇r f(Xr ),∇

rPr ,t f(Xr )−e−
∫ t
r K1(τ,Xτ)dτ//−1

r ,t ∇
t f(Xt )

〉
r

dr ∧0.
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Corollary [Cheng-A.Th. 2017]

Let (t ,x) 7→ K(t ,x) be some continuous function on I×M. The following
statements are equivalent to each other:

(i) the family (M,gt )t∈I evolves by

1
2
∂tgt = Rict −∇

tZt −K(t , ·)gt , t ∈ I;

(ii) for f ∈ C∞0 (M) and 0 ≤ s ≤ t in I,

|∇sPs,t f |2s −E
(x,s)

[
e−2

∫ t
s K(r ,Xr )dr

|∇t f |2t (Xt )
]

≤ 4
[〈
∇s f ,∇sPs,t f

〉
s −

〈
∇s f ,E(x,s)

[
e−

∫ t
s K(r ,Xr )dr//−1

s,t ∇
t f(Xt )

]〉
s

]
∧0;

(iii) version of a Poincaré inequality

(iv) version of a log-Sobolev inequality
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If Zt ≡ 0 and K ≡ 0, the results characterize solutions to the
Ricci flow; see Haslhofer and Naber (2016) for functional
inequalities on path space characterizing Ricci flow.
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Example: Ricci flow

Consider the heat equation under Ricci flow:
∂

∂t
u−∆gt u = 0

∂

∂t
gt −2Ricgt = 0

The case of forward Ricci flow we get by reparametrizing the
metric:

ĝt := gT−t

Let
u(x, t) = (Ps,t f)(x), 0 ≤ s ≤ t in I.
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We have
Ps,t f(x) = E

[
f(X (x,s)

t )
]
, 0 ≤ s ≤ t ,

and

∇sPs,t f(x) = E
[
Qs,t//

−1
s,t ∇

t f(X (x,s)
t )

]
, 0 ≤ s ≤ t ,

where Qs,t ∈ Aut(TXs M) is constructed as solution to the
equation:

dQs,t

dt
= −Qs,t R//s,t , Qs,s = id.

Recall

R//s,t = //−1
s,t

(
Ricgt −

1
2
∂tgt

)
//s,t , Z = 0, K1 = K2 = K = 0.

We see that Qs,t = identity if and only if the metric evolves by
(backward) Ricci flow.
This explains why Riemannian manifolds evolving under Ricci
flow share many properties of Ricci flat static manifolds.
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Supersolutions to the Ricci flow
For a smooth family (M,g(t))t∈I of Riemannian metrics are
equivalent:

(M,g(t))t∈I is a supersolution to the Ricci flow, i.e.

2Ricg(t)−
∂

∂t
g(t) ≥ 0.

For each f ∈ C∞c (M) the heat flow on (M,g(t))t∈I satisfies

|∇sPs,t f |g(s) ≤ Ps,t |∇
t f |g(t), 0 ≤ s < t in I.

For each f ∈ C∞c (M) the heat flow on (M,g(t))t∈I satisfies

|∇sPs,t f |2g(s) ≤ Ps,t |∇
t f |2g(t), 0 ≤ s < t in I.
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Let P(x,s)M be the space of continuous paths on M, starting in
x at time s and P(x,s) the probability measure on it, induced by
the (inhomogeneous) BM

X (x,s)
t , t ≥ s.

For a cylindrical function F on P(x,s)M with

F(γ) = f(γt1 , . . . ,γtr ), s ≤ t1 < . . . < tr ≤ t ,

consider again the intrinsic gradient defined as

D//
s F(X[s,t]) =

r∑
i=1

//−1
s,ti (∇i

g(ti)
f)(Xt1 , . . . ,Xtr ),

where ∇i denotes the gradient with respect to the i-th
component.
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Characterization of solutions to the Ricci flow
For a smooth family (M,g(t))t∈I of Riemannian metrics are
equivalent:

(M,g(t))t∈I is a solution to the Ricci flow, i.e.

∂

∂t
g(t)−2Ricg(t) = 0.

For each cylindrical function F : P(x,s)M→ R,

|∇s
xE

(x,s)F | ≤ E(x,s)|D//
s F |.

For each cylindrical function F : P(x,s)M→ R,

|∇s
xE

(x,s)F |2 ≤ E(x,s)|D//
s F |2.

Here | · |= | · |g(s).
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